DOI QR코드

DOI QR Code

고강도 및 내열성능이 향상된 방화복 코팅원단용 (Ti1-xHfx)N 고용체 열-기계적 특성 연구

A Study of Thermo-mechanical Properties of (Ti1-xHfx)N Solid Solution of High-strength and Heat-resistant Coated Fabrics for Fire Proximity Suits

  • 김효경 (숭실대학교 유기신소재파이버공학과) ;
  • 김준철 (숭실대학교 기계공학부) ;
  • 전세환 (숭실대학교 유기신소재파이버공학과) ;
  • 진세훈 (숭실대학교 유기신소재파이버공학과) ;
  • 최윤성 (숭실대학교 스마트웨어러블공학과) ;
  • 김지웅 (숭실대학교 유기신소재파이버공학과)
  • Kim, Hyokyeong (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Joonchul (School of Mechanical Engineering, Soongsil University) ;
  • Chun, Sehwan (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Jin, Sehoon (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Choi, Yoon-Seung (Department of Smart Wearables Engineering, Soongsil University) ;
  • Kim, Jiwoong (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 투고 : 2022.06.03
  • 심사 : 2022.06.25
  • 발행 : 2022.06.30

초록

We investigated temperature-dependent elastic properties of (Ti1-xHfx)N solid solutions via first principles calculations. The precise convergence tests were performed to obtaining reliable results. Equilibrium structure information of the (Ti1-xHfx)N was in a good agreement with previous results indicated the reliability of the results. The difference between the bulk moduli of TiN and HfN at 0 K and 3000 K is approximately 30 GPa, indicating that the elastic properties are not well maintained at high temperatures. At each temperature, the shear, and Young's moduli of (Ti0.5Hf0.5)N were greater than those of HfN. In addition, (Ti0.5Hf0.5)N maintained its high hardness, which was not significantly affected by temperature. As a result, ternary nitride, such as (Ti0.5Hf0.5)N, is a more promising material for extreme environments than a simple binary system. The results of this study will provide useful information on how to develop new (Ti1-xHfx)N coating materials for fire proximity suits.

키워드

과제정보

이 연구는 2020년도 숭실대학교 교내연구비 지원(융합연구)에 의한 연구임.

참고문헌

  1. A. Ghazy, "On the Performance of Firefighting Suits Under Different Patterns of Firefighter's Movement: Radiation Heat Transfer Between Layers of the Suit", Fire Technol., 2022, 58, 1-22. https://doi.org/10.1007/s10694-022-01239-w
  2. D. Barr, W. Gregson, and T. Reilly, "The Thermal Ergonomics of Firefighting Reviewed", Applied Ergonomics, 2010, 41, 161-172. https://doi.org/10.1016/j.apergo.2009.07.001
  3. B. Wang, X. Lai, H. Li, C. Jiang, J. Gao, and X. Zeng, "Multifunctional MXene/Chitosan-coated Cotton Fabric for Intelligent Fire Protection", ACS Appl. Mater. Interfaces, 2021, 13, 23020-23029. https://doi.org/10.1021/acsami.1c05222
  4. J. Karthikeyan and M. Mayuram, "Ceramic Coating Technology", Sadhana, 1988, 13, 139-156. https://doi.org/10.1007/BF02811962
  5. D. Rickerby, A. Jones, and B. Bellamy, "Internal Stress in Titanium Nitride Coatings: Modelling of Complex Stress Systems", Surf. Coat. Technol., 1988, 36, 661-674. https://doi.org/10.1016/0257-8972(88)90007-2
  6. W. Meng and G. Eesley, "Growth and Mechanical Anisotropy of TiN Thin Films", Thin Solid Films, 1995, 271, 108-116. https://doi.org/10.1016/0040-6090(95)06875-9
  7. Z. Gao, J. Buchinger, N. Koutna, T. Wojcik, R. Hahn, and P. H. Mayrhofer, "Ab Initio Supported Development of TiN/MoN Superlattice Thin Films with Improved Hardness and Toughness", Acta Materialia, 2022, 231, 117871. https://doi.org/10.1016/j.actamat.2022.117871
  8. J. Kim and S. Kang, "Elastic and Thermo-physical Properties of TiC, TiN, and Their Intermediate Composition Alloys Using ab Initio Calculations", J. Alloys Compd., 2012, 528, 20-27. https://doi.org/10.1016/j.jallcom.2012.02.124
  9. M. Pang, Y. Peng, P. Zhou, and Y. Du, "Thermodynamic Modeling of the Hf-N System", J. Mining and Metallurgy, Section B: Metallurgy, 2018, 54, 111-118. https://doi.org/10.2298/JMMB170520055P
  10. W. Lengauer, R. Taubler, J. Bauer, J. Debuigne, and P. Ettmayer, "Titanium '92, Science and Technology", The Minerals, Metals, and Materials Society, Warrendale, PA, 1993, pp.675-682.
  11. G. Kresse and J. Furthmuller, "Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set", Comput. Mater. Sci., 1996, 6, 15-50. https://doi.org/10.1016/0927-0256(96)00008-0
  12. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett., 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  13. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-Zone Integrations", Phys. Rev. B, 1976, 13, 5188. https://doi.org/10.1103/PhysRevB.13.5188
  14. P. E. Blochl, O. Jepsen, and O. K. Andersen, "Improved Tetrahedron Method for Brillouin-zone Integrations", Phys. Rev. B, 1994, 49, 16223. https://doi.org/10.1103/physrevb.49.16223
  15. M. A. Meyers and K. K. Chawla, "Mechanical Behavior of Materials", Cambridge University Press, 2008.
  16. W. Voigt, "Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik)", BG Teubner, Vol. 34, 1910.
  17. A. Reuss, "Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 1929, 9, 49-58. https://doi.org/10.1002/zamm.19290090104
  18. R. Hill, "The Elastic Behaviour of a Crystalline Aggregate", Proceedings of the Physical Society, Section A, 1952, 65, 349. https://doi.org/10.1088/0370-1298/65/5/307
  19. X.-G. Lu, M. Selleby, and B. Sundman, "Calculations of Thermophysical Properties of Cubic Carbides and Nitrides Using the Debye-Gruneisen Model", Acta Materialia, 2007, 55, 1215-1226. https://doi.org/10.1016/j.actamat.2006.05.054
  20. J. Kim and S. Kang, "First Principles Investigation of Temperature and Pressure Dependent Elastic Properties of ZrC and ZrN Using Debye-Gruneisen Theory", J. Alloys Compd., 2012, 540, 94-99. https://doi.org/10.1016/j.jallcom.2012.04.085
  21. M. Blanco, E. Francisco, and V. Luana, "GIBBS: Isothermal-isobaric Thermodynamics of Solids from Energy Curves Using a Quasi-harmonic Debye Model", Comput. Phys. Commun., 2004, 158, 57-72. https://doi.org/10.1016/j.comphy.2003.12.001
  22. Y. Tian, B. Xu, and Z. Zhao, "Microscopic Theory of Hardness and Design of Novel Superhard Crystals", Int. J. Refractory Metals and Hard Mater., 2012, 33, 93-106. https://doi.org/10.1016/j.ijrmhm.2012.02.021
  23. X.-Q. Chen, H. Niu, D. Li, and Y. Li, "Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses", Intermetallics, 2011, 19, 1275-1281. https://doi.org/10.1016/j.intermet.2011.03.026
  24. S.-H. Jhi, J. Ihm, S. G. Louie, and M. L. Cohen, "Electronic Mechanism of Hardness Enhancement in Transition-metal Carbonitrides", Nature, 1999, 399, 132-134. https://doi.org/10.1038/20148
  25. Z.-Y. Jiao, S.-H. Ma, X.-Z. Zhang, and X.-F. Huang, "Pressure-induced Effects on Elastic and Mechanical Properties of TiC and TiN: a DFT Study", EPL (Europhysics Letters), 2013, 101, 46002. https://doi.org/10.1209/0295-5075/101/46002
  26. Z. Liu, B. Burton, S. Khare, and D. Gall, "First-principles Phase Diagram Calculations for the Rocksalt-structure Quasibinary Systems TiN-ZrN, TiN-HfN and ZrN-HfN", J. Phys.: Condensed Matter, 2016, 29, 035401. https://doi.org/10.1088/0953-8984/29/3/035401
  27. W.-W. Xu, F. Xia, L. Chen, M. Wu, T. Gang, and Y. Huang, "High-temperature Mechanical and Thermodynamic Properties of Silicon Carbide Polytypes", J. Alloys Compd., 2018, 768, 722-732. https://doi.org/10.1016/j.jallcom.2018.07.299
  28. K. Chen and L. Zhao, "Elastic Properties, Thermal Expansion Coefficients and Electronic Structures of Ti0.75X0.25C Carbides", J. Phys. Chem. Solids, 2007, 68, 1805-1811. https://doi.org/10.1016/j.jpcs.2007.05.008
  29. A. Zaoui, B. Bouhafs, and P. Ruterana, "First-principles Calculations on the Electronic Structure of TiCxN1-x, ZrxNb1-xC and HfCxN1-x alloys", Mater. Chem. Phys., 2005, 91, 108-115. https://doi.org/10.1016/j.matchemphys.2004.10.056
  30. V. Zhukov, V. A. Gubanov, O. Jepsen, N. E. Christensen, and O. K. Andersen, "Calculated Energy-band Structures and Chemical Bonding in Titanium and Vanadium Carbides, Nitrides and Oxides", J. Phys. Chem. Solids, 1988, 49, 841-849. https://doi.org/10.1016/0022-3697(88)90037-6
  31. A. Srivastava and B. D. Diwan, "Structural and Elastic Properties of ZrN and HfN: Ab Initio Study", Canadian J. Phys., 2014, 92, 1058-1061. https://doi.org/10.1139/cjp-2013-0377