DOI QR코드

DOI QR Code

The Physical Properties and Structural Changes of Flexible MAPbI3 Thin Films according to the Fabrication Method

제작 공정에 따른 유연 MAPbI3 박막의 물성 및 구조적 변화 연구

  • Yoon, Haeun (School of Chemical Engineering, Pusan National University) ;
  • Hong, Seungyeon (School of Chemical Engineering, Pusan National University) ;
  • Lee, Sung Hun (School of Chemical Engineering, Pusan National University) ;
  • Kim, Hyo Jung (School of Chemical Engineering, Pusan National University)
  • 윤하은 (부산대학교 응용화학공학부) ;
  • 홍승연 (부산대학교 응용화학공학부) ;
  • 이성훈 (부산대학교 응용화학공학부) ;
  • 김효정 (부산대학교 응용화학공학부)
  • Received : 2022.06.01
  • Accepted : 2022.06.23
  • Published : 2022.06.30

Abstract

The structural analysis is essential for the development of flexible metal-halide perovskite solar cell devices because its performance is critically influenced by the mechanical external stress. Here, we investigated the effect of mechanical stress on metal-halide perovskite films prepared by powder-based method different from conventional precursor solution method. Before studying the effect of the mechanical stress, we confirmed the MAPbI3 powder crystal structure through Rietveld refinement of powder x-ray diffraction data. We fabricated thin films with powder-based method and compared their crystal structures using Grazing Incidence Wide Angle X-ray Scattering (GIWAXS), which showed no significant differences from films based on conventional solution method. To investigate the mechanical stress effect on the perovskite film, we prepared MAPbI3 layer on PEN substrates and compared the crystalline structural changes after bending test. In the case of conventional MAPbI3 layer, intergranular crack was observed, while the transgranular crack was formed in the powder-based MAPbI3 layer after bending test. Finally, we fabricated a solar cell device on the polyethylene naphthalate (PEN) substrate and investigated changes of the J-V characteristics after mechanical stress.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, and N. G. Park, "Lead Iodide Perovskite Sensitized All-solid-state Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%", Sci. Rep., 2012, 2, 591. https://doi.org/10.1038/srep00591
  2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites", Science, 2012, 338, 643-647. https://doi.org/10.1126/science.1228604
  3. https://www.nrel.gov/pv/cell-efficiency.html (Accessed April 26, 2022).
  4. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, "Direct Measurement of the Exciton Binding Energy and Effective Masses for Charge Carriers in Organic-inorganic Tri-halide Perovskites", Nat. Phys., 2015, 11, 582-587. https://doi.org/10.1038/nphys3357
  5. R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Horantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, "Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells", Adv. Energy Mater., 2016, 6, 1502458. https://doi.org/10.1002/aenm.201502458
  6. S. D. Samuel, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber", Science, 2013, 342, 341-344. https://doi.org/10.1126/science.1243982
  7. G. Lee, M.-C. Kim, Y. W. Choi, N. Ahn, J. Jang, J. Yoon, S. M. Kim, J.-G. Lee, D. Kang, H. S. Jung, and M. Choi, "Ultra-flexible Perovskite Solar Cells with Crumpling Durability: Toward a Wearable Power Source", Energy Environ. Sci., 2019, 12, 3182-3191. https://doi.org/10.1039/C9EE01944H
  8. H. S. Jung, G. S. Han, N.-G Park, and M. J. Ko, "Flexible Perovskite Solar Cells", Joule, 2019, 3, 1850-1880. https://doi.org/10.1016/j.joule.2019.07.023
  9. M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, "Cesium-containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency", Energy Environ. Sci., 2016, 9, 1989-1997. https://doi.org/10.1039/c5ee03874j
  10. Y. Zhang, S. Seo, S. Y. Lim, Y. Kim, S.-G. Kim, D.-K. Lee, S.-H. Lee, H. Shin, H. Cheong, and N.-G. Park, "Achieving Reproducible and High-Efficiency (>21%) Perovskite Solar Cells with a Presynthesized FAPbI3 Powder", ACS Energy Lett., 2019, 5, 360-366. https://doi.org/10.1021/acsenergylett.9b02348
  11. R. Singh, S. Sandhu, H. Yadav, and J. J. Lee, "Stable Triple-Cation (Cs(+)-MA(+)-FA(+)) Perovskite Powder Formation under Ambient Conditions for Hysteresis-Free High-Efficiency Solar Cells", ACS Appl. Mater. Interfaces, 2019, 11, 29941-29949. https://doi.org/10.1021/acsami.9b09121
  12. D.-H. Song, J. H. Heo, H. J. Han, M. S. You, and S. H. Im, "Reproducible Formation of Uniform CH3NH3PbI3-xClx Mixed Halide Perovskite Film by Separation of the Powder Formation and Spin-coating Process", J. Power Sources, 2016, 310, 130-136. https://doi.org/10.1016/j.jpowsour.2016.02.010
  13. Y. C. Choi, S. W. Lee, and D.-H. Kim, "Antisolvent-assisted Powder Engineering for Controlled Growth of Hybrid CH3NH3PbI3 Perovskite Thin Films", APL Mater., 2017, 5, 026101. https://doi.org/10.1063/1.4974942
  14. Y. C. Choi, S. W. Lee, H. J. Jo, D.-H. Kim, and S.-J. Sung, "Controlled Growth of Organic-inorganic Hybrid CH3NH3PbI3 Perovskite Thin Films from Phase-controlled Crystalline Powders", RSC Adv., 2016, 6, 104359-104365. https://doi.org/10.1039/c6ra19203c
  15. Y. Zhang, S. G. Kim, D. K. Lee, and N. G. Park, "CH3NH3PbI3 and HC(NH2)2PbI3 Powders Synthesized from Low-Grade PbI2 : Single Precursor for High-Efficiency Perovskite Solar Cells", ChemSusChem, 2018, 11, 1813-1823. https://doi.org/10.1002/cssc.201800610
  16. J. H. Heo and S. H. Im, "Highly Reproducible, Efficient Hysteresis-less CH3NH3PbI(3-x)Cl(x) Planar Hybrid Solar Cells without Requiring Heat-treatment", Nanoscale, 2016, 8, 2554-2560. https://doi.org/10.1039/c5nr08458j
  17. G. S. Shin, Y. Zhang, and N. G. Park, "Stability of Precursor Solution for Perovskite Solar Cell: Mixture (FAI+PbI2) Versus Synthetic FAPbI3 Crystal", ACS Appl. Mater. Interfaces, 2020, 12, 15167-15174. https://doi.org/10.1021/acsami.9b23086
  18. S.-W. Wi, "Grain Sorting Technique for X-ray Micro-diffraction and Rietveld Refinement on Polycrystalline", Ph.D. Thesis, Soongsil University, Seoul, Korea, 2020.
  19. H. M. Rietveld, "A Profile Refinement method for Nuclear and Magnetic Structures", J. Appl. Cryst., 1969, 2, 65-71. https://doi.org/10.1107/S0021889869006558
  20. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, "Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-infrared Photoluminescent Properties", Inorg. Chem., 2013, 52, 9019-9038. https://doi.org/10.1021/ic401215x
  21. B. H. Toby, "R Factors in Rietveld Analysis: How Good is Good Enough?", Powder Diffr., 2012, 21, 67-70. https://doi.org/10.1154/1.2179804
  22. S. Li, X. Liu, V. Anand, and B. Lv, "Superconductivity from Site-selective Ru Doping Studies in Zr5Ge3 Compound", New J. Phys., 2018, 20, 013009. https://doi.org/10.1088/1367-2630/20/1/013009
  23. S. H. Lee, S. Hong, S. An, T.-Y. Jeon, and H. J. Kim, "Strategy for the Complete Conversion of Thermally Grown PbI2 Layers in Inverted Perovskite Solar Cells", Electron. Mater. Lett., 2020, 16, 588-594. https://doi.org/10.1007/s13391-020-00250-z
  24. S. Kavadiya, J. Strzalka, D. M. Niedzwiedzki, and P. Biswas, "Crystal Reorientation in Methylammonium Lead Iodide Perovskite Thin Film with Thermal Annealing", J. Mater. Chem., 2019, 7, 12790-12799. https://doi.org/10.1039/c9ta02358e
  25. L. Hu, K. Sun, M. Wang, W. Chen, B. Yang, J. Fu, Z. Xiong, X. Li, X. Tang, Z. Zang, S. Zhang, L. Sun, and M. Li, "Inverted Planar Perovskite Solar Cells with a High Fill Factor and Negligible Hysteresis by the Dual Effect of NaCl-Doped PEDOT:PSS", ACS Appl. Mater. Interfaces, 2017, 9, 43902-43909. https://doi.org/10.1021/acsami.7b14592
  26. K. He, N. Chen, C. Wang, L. Wei, and J. Chen, "Method for Determining Crystal Grain Size by X-Ray Diffraction", Cryst. Res. Technol., 2018, 53, 1700157. https://doi.org/10.1002/crat.201700157
  27. L. Pei, H. Yu, Q. Zhang, J. Li, K. Wang, and B. Hu, "Concave and Convex Bending Influenced Mechanical Stability in Flexible Perovskite Solar Cells", J. Phys. Chem. C, 2020, 124, 2340-2345. https://doi.org/10.1021/acs.jpcc.9b10407