DOI QR코드

DOI QR Code

Molecular Dynamics Simulations on Structural and Mass Transport Properties in the Catalyst Layer of PEMFCs

분자동역학을 이용한 고분자 전해질막 연료전지 촉매층의 구조특성 및 물질 전달 특성 연구

  • Lee, Ji Hee (School of Chemical Engineering, Pusan National University) ;
  • Yim, Sung-Dae (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Sohn, Young-Jun (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Lee, Seung Geol (School of Chemical Engineering, Pusan National University)
  • 이지희 (부산대학교 응용화학공학부) ;
  • 임성대 (한국에너지기술연구원 연료전지연구실) ;
  • 손영준 (한국에너지기술연구원 연료전지연구실) ;
  • 이승걸 (부산대학교 응용화학공학부)
  • Received : 2022.06.01
  • Accepted : 2022.06.24
  • Published : 2022.06.30

Abstract

Fuel cells are representative eco-friendly electrochemical devices that convert chemical energy into electrical energy using hydrogen as an energy source. We investigated various factors affecting the performance of the fuel cell in the catalyst layer of polymer electrolyte membrane fuel cell using molecular dynamics simulations. Since the catalyst layer is a key factor in which the electrochemical conversion reaction required for operating the fuel cell occurs, it is essential to understand the molecular transport mechanism in the catalyst layer to optimize the fuel cell performance. In this study, the ionomer film models were constructed based on two types of hydration levels to analyze the effect of the ionomer film thickness and hydration level on the internal nanostructure. In addition, the mechanisms by which these changes in internal nanostructures affect the development of water transport pathways and the transport properties of water molecules, protons, and oxygen were studied.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단(기후변화대응 기초원천기술개발과제)의 지원을 받아 작성되었음(NRF-2020M1A2A2080807).

References

  1. A. Kusoglu and A. Z. Weber, "New Insights into Perfluorinated Sulfonic-acid Ionomers", Chem. Rev., 2017, 117, 987-1104. https://doi.org/10.1021/acs.chemrev.6b00159
  2. K. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, and Y. Morimoto, "Challenges in Applying Highly Active Pt-based Nanostructured Catalysts for Oxygen Reduction Reactions to Fuel Cell Vehicles", Nat. Nanotechnol., 2021, 16, 140-147. https://doi.org/10.1038/s41565-020-00824-w
  3. Y. Wang, D. F. R. Diaz, K. S. Chen, Z. Wang, and X. C. Adroher, "Materials, Technological Status, and Fundamentals of PEM Fuel Cells - A Review", Mater. Today, 2020, 32, 178-203. https://doi.org/10.1016/j.mattod.2019.06.005
  4. D. Banham, T. Kishimoto, Y. Zhou, T. Sato, K. Bai, J. I. Ozaki, Y. Imashiro, and S. Ye, "Critical Advancements in Achieving High Power and Stable Nonprecious Metal Catalyst-based MEAs for Real-world Proton Exchange Membrane Fuel Cell Applications", Sci. Adv., 2018, 4, eaar7180. https://doi.org/10.1126/sciadv.aar7180
  5. Y. J. Wang, W. Y. Long, L. L. Wang, R. S. Yuan, A. Ignaszak, B. Z. Fang, and D. P. Wilkinson, "Unlocking the Door to Highly Active ORR Catalysts for PEMFC Applications: Polyhedron-engineered Pt-based Nanocrystals", Energy Environ. Sci., 2018, 11, 258-275. https://doi.org/10.1039/c7ee02444d
  6. M. K. Debe, "Electrocatalyst Approaches and Challenges for Automotive Fuel Cells", Nature, 2012, 486, 43-51. https://doi.org/10.1038/nature11115
  7. A. Kraytsberg and Y. Ein-Eli, "Review of Advanced Materials for Proton Exchange Membrane Fuel Cells", Energy Fuels, 2014, 28, 7303-7330. https://doi.org/10.1021/ef501977k
  8. J. Xie, S. Ban, B. Liu, and H. Zhou, "A Molecular Simulation Study of Chemical Degradation and Mechanical Deformation of Hydrated Nafion Membranes", Appl. Surf. Sci., 2016, 362, 441-447. https://doi.org/10.1016/j.apsusc.2015.11.144
  9. D. Y. Shin, Y.-J. Shin, M.-S. Kim, J. A. Kwon, and D.-H. Lim, "Density Functional Theory-based Design of a Pt-skinned PtNi Catalyst for the Oxygen Reduction Reaction in Fuel Cells", Appl. Surf. Sci., 2021, 565, 150518. https://doi.org/10.1016/j.apsusc.2021.150518
  10. N. N. Pham, K. H. Kim, B. Han, and S. G. Lee, "Theoretical Investigation of the Active Sites in N-Doped Graphene Bilayer for the Oxygen Reduction Reaction in Alkaline Media in PEMFCs", J. Phys. Chem. C, 2022, 126, 5863-5872. https://doi.org/10.1021/acs.jpcc.1c09657
  11. N. N. Pham, S. G. Kang, H.-J. Kim, C. Pak, B. Han, and S. G. Lee, "Catalytic Activity of Ni3Mo Surfaces for Hydrogen Evolution Reaction: A Density Functional Theory Approach", Appl. Surf. Sci., 2021, 537, 147894. https://doi.org/10.1016/j.apsusc.2020.147894
  12. J. P. Owejan, J. E. Owejan, and W. B. Gu, "Impact of Platinum Loading and Catalyst Layer Structure on PEMFC Performance", J. Electrochem. Soc., 2013, 160, F824-F833. https://doi.org/10.1149/2.072308jes
  13. A. Z. Weber and A. Kusoglu, "Unexplained Transport Resistances for Low-loaded Fuel-cell Catalyst Layers", J. Mater. Chem. A, 2014, 2, 17207-17211. https://doi.org/10.1039/C4TA02952F
  14. J. Zhang, "PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications", Springer, Canada, 2008.
  15. M. Eikerling, A. A. Kornyshev, and A. R. Kucernak, "Water in Polymer Electrolyte Fuel Cells: Friend or Foe?", Phys. Today, 2006, 59, 38-44.
  16. T. Soboleva, K. Malek, Z. Xie, T. Navessin, and S. Holdcroft, "PEMFC Catalyst Layers: the Role of Micropores and Mesopores on Water Sorption and Fuel Cell Activity", ACS Appl. Mater. Interfaces, 2011, 3, 1827-1837. https://doi.org/10.1021/am200590w
  17. J. H. Lee, H. Kang, S.-D. Yim, Y.-J. Sohn, and S. G. Lee, "Revelation of Transport Properties of Ultra-thin Ionomer Films in Catalyst Layer of Polymer Electrolyte Membrane Fuel Cells Using Molecular Dynamics", Appl. Surf. Sci., 2022, 598, 153815. https://doi.org/10.1016/j.apsusc.2022.153815
  18. K. A. Mauritz and R. B. Moore, "State of Understanding of Nafion", Chem. Rev., 2004, 104, 4535-4585. https://doi.org/10.1021/cr0207123
  19. T. Soboleva, X. Zhao, K. Malek, Z. Xie, T. Navessin, and S. Holdcroft, "On the Micro-, Meso-, and Macroporous Structures of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers", ACS Appl. Mater. Interfaces, 2010, 2, 375-384. https://doi.org/10.1021/am900600y
  20. A. Kongkanand, "Interfacial Water Transport Measurements in Nafion Thin Films Using a Quartz-Crystal Microbalance", J. Phys. Chem. C, 2011, 115, 11318-11325. https://doi.org/10.1021/jp2028214
  21. K. Kudo, R. Jinnouchi, and Y. Morimoto, "Humidity and Temperature Dependences of Oxygen Transport Resistance of Nafion Thin Film on Platinum Electrode", Electrochim. Acta, 2016, 209, 682-690. https://doi.org/10.1016/j.electacta.2016.04.023
  22. M. A. Modestino, D. K. Paul, S. Dishari, S. A. Petrina, F. I. Allen, M. A. Hickner, K. Karan, R. A. Segalman, and A. Z. Weber, "Self-Assembly and Transport Limitations in Confined Nafion Films", Macromol., 2013, 46, 867-873. https://doi.org/10.1021/ma301999a
  23. S. A. Eastman, S. Kim, K. A. Page, B. W. Rowe, S. H. Kang, S. C. DeCaluwe, J. A. Dura, C. L. Soles, and K. G. Yager, "Effect of Confinement on Structure, Water Solubility, and Water Transport in Nafion Thin Films", Macromol., 2012, 45, 7920-7930. https://doi.org/10.1021/ma301289v
  24. K. H. Kim, K. Y. Lee, S. Y. Lee, E. Cho, T. H. Lim, H. J. Kim, S. P. Yoon, S. H. Kim, T. W. Lim, and J. H. Jang, "The Effects of Relative Humidity on the Performances of PEMFC MEAs with Various Nafion (R) Ionomer Contents", Int. J. Hydrogen Energy, 2010, 35, 13104-13110. https://doi.org/10.1016/j.ijhydene.2010.04.082
  25. A. Kusoglu, D. Kushner, D. K. Paul, K. Karan, M. A. Hickner, and A. Z. Weber, "Impact of Substrate and Processing on Confinement of Nafion Thin Films", Adv. Funct. Mater., 2014, 24, 4763-4774. https://doi.org/10.1002/adfm.201304311
  26. Y. Ono, A. Ohma, K. Shinohara, and K. Fushinobu, "Influence of Equivalent Weight of Ionomer on Local Oxygen Transport Resistance in Cathode Catalyst Layers", J. Electrochem. Soc., 2013, 160, F779-F787. https://doi.org/10.1149/2.040308jes
  27. M. Lopez-Haro, L. Guetaz, T. Printemps, A. Morin, S. Escribano, P. H. Jouneau, P. Bayle-Guillemaud, F. Chandezon, and G. Gebel, "Three-dimensional Analysis of Nafion Layers in Fuel Cell Electrodes", Nat. Commun., 2014, 5, 5229. https://doi.org/10.1038/ncomms6229
  28. G. C. Abuin, M. C. Fuertes, and H. R. Corti, "Substrate Effect on the Swelling and Water Sorption of Nafion Nanomembranes", J. Membr. Sci., 2013, 428, 507-515. https://doi.org/10.1016/j.memsci.2012.10.060
  29. Z. Siroma, R. Kakitsubo, N. Fujiwara, T. Ioroi, S. I. Yamazaki, and K. Yasuda, "Depression of Proton Conductivity in Recast Nafion (R) Film Measured on Flat Substrate", J. Power Sources, 2009, 189, 994-998. https://doi.org/10.1016/j.jpowsour.2008.12.141
  30. D. Paul, A. Fraser, J. Pearce, and K. Karan, "Understanding the Ionomer Structure and the Proton Conduction Mechanism in PEFC Catalyst Layer: Adsorbed Nafion on Model Substrate", ECS Trans., 2011, 41, 1393. https://doi.org/10.1149/1.3635670
  31. A. Ohma, T. Mashio, K. Sato, H. Iden, Y. Ono, K. Sakai, K. Akizuki, S. Takaichi, and K. Shinohara, "Analysis of Proton Exchange Membrane Fuel Cell Catalyst Layers for Reduction of Platinum Loading at Nissan", Electrochim. Acta, 2011, 56, 10832-10841. https://doi.org/10.1016/j.electacta.2011.04.058
  32. R. Jinnouchi, K. Kudo, N. Kitano, and Y. Morimoto, "Molecular Dynamics Simulations on O2 Permeation Through Nafion Ionomer on Platinum Surface", Electrochim. Acta, 2016, 188, 767-776. https://doi.org/10.1016/j.electacta.2015.12.031
  33. D. K. Paul, A. Fraser, and K. Karan, "Towards the Understanding of Proton Conduction Mechanism in PEMFC Catalyst Layer: Conductivity of Adsorbed Nafion Films", Electrochem. Commun., 2011, 13, 774-777. https://doi.org/10.1016/j.elecom.2011.04.022
  34. H. Kang, S. H. Kwon, and S. G. Lee, "Molecular Dynamics Simulations on Catalyst Layers of Polymer Electrolyte Membrane Fuel Cell", KIC News, 2021, 24, 14-27.
  35. S. H. Kwon, H. Kang, Y.-J. Sohn, J. Lee, S. Shim, and S. G. Lee, "Molecular Dynamics Simulation Study on the Effect of Perfluorosulfonic Acid Side Chains on Oxygen Permeation in Hydrated Ionomers of PEMFCs", Sci. Rep., 2021, 11, 1-10. https://doi.org/10.1038/s41598-020-79139-8
  36. G. Doo, S. Yuk, J. H. Lee, S. Choi, D.-H. Lee, D. W. Lee, J. Hyun, S. H. Kwon, S. G. Lee, and H.-T. Kim, "Nano-scale Control of the Ionomer Distribution by Molecular Masking of the Pt Surface in PEMFCs", J. Mater. Chem. A, 2020, 8, 13004-13013. https://doi.org/10.1039/c9ta14002f
  37. H. Kang and S. G. Lee, "Recent Research Trend in Electrodes of Lithium Ion Battery Based on Computational Materials Science Approaches", Kic News, 2020, 23, 42-54.
  38. S. L. Mayo, B. D. Olafson, and W. A. Goddard, "Dreiding - a Generic Force-Field for Molecular Simulations", J. Phys. Chem. C, 1990, 94, 8897-8909. https://doi.org/10.1021/j100389a010
  39. J. Hyun, G. Doo, S. Yuk, D. H. Lee, D. W. Lee, S. Choi, J. Kwen, H. Kang, R. Tenne, S. G. Lee, and H. T. Kim, "Magnetic Field-Induced Through-Plane Alignment of the Proton Highway in a Proton Exchange Membrane", ACS Appl. Energy Mater., 2020, 3, 4619-4628. https://doi.org/10.1021/acsaem.0c00289
  40. K. A. Lee, K. R. Yoon, S. H. Kwon, K. J. Lee, S. Jo, J. S. Lee, K. Y. Lee, S. W. Lee, S. G. Lee, and J. Y. Kim, "Post-assembly Modification of Polymeric Composite Membranes Using Spin Drying for Fuel Cell Applications", J. Mater. Chem. A, 2019, 7, 7380-7388. https://doi.org/10.1039/c8ta10538c
  41. J. H. Lee, G. Doo, S. H. Kwon, H. Kang, S. Choi, S. D. Yim, H. T. Kim, and S. G. Lee, "Controlling Ionomer Film Morphology through Altering Pt Catalyst Surface Properties for Polymer Electrolyte Membrane Fuel Cells", ACS Appl. Polym. Mater., 2020, 2, 1807-1818. https://doi.org/10.1021/acsapm.0c00042
  42. S. H. Kwon, S. Y. Lee, H. J. Kim, H. T. Kim, and S. G. Lee, "Molecular Dynamics Simulation to Reveal Effects of Binder Content on Pt/C Catalyst Coverage in a High-Temperature Polymer Electrolyte Membrane Fuel Cell", ACS Appl. Nano Mater., 2018, 1, 3251-3258. https://doi.org/10.1021/acsanm.8b00484
  43. H. Kang, S. H. Kwon, R. Lawler, J. H. Lee, G. Doo, H. T. Kim, S. D. Yim, S. S. Jang, and S. G. Lee, "Nanostructures of Nafion Film at Platinum/Carbon Surface in Catalyst Layer of PEMFC: Molecular Dynamics Simulation Approach", J. Phys. Chem. C, 2020, 124, 21386-21395. https://doi.org/10.1021/acs.jpcc.0c03651
  44. M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig, and V. Daggett, "Calibration and Testing of a Water Model For Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution", J. Phys. Chem. B, 1997, 101, 5051-5061. https://doi.org/10.1021/jp964020s
  45. X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, "Misfit-energy-increasing Dislocations in Vapor-deposited CoFe/NiFe Multilayers", Phys. Rev. B, 2004, 69, 144113. https://doi.org/10.1103/physrevb.69.144113
  46. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett., 1996, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  47. R. S. Mulliken, "Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I", J. Chem. Phys., 1955, 23, 1833-1840. https://doi.org/10.1063/1.1740588
  48. S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular-Dynamics", J. Comput. Phys., 1995, 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
  49. W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, "A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation of Physical Clusters of Molecules - Application to Small Water Clusters", J. Chem. Phys., 1982, 76, 637-649. https://doi.org/10.1063/1.442716
  50. R. W. Hockney and J. W. Eastwood, "Computer Simulation Using Particles", CRC Press, 2021.
  51. M. Shao, A. Peles, and K. Shoemaker, "Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity", Nano Lett., 2011, 11, 3714-3719. https://doi.org/10.1021/nl2017459
  52. A. Kusoglu, A. Kwong, K. T. Clark, H. P. Gunterman, and A. Z. Weber, "Water Uptake of Fuel-Cell Catalyst Layers", J. Electrochem. Soc., 2012, 159, F530-F535. https://doi.org/10.1149/2.031209jes
  53. M. Inaba, T. Kuroe, Z. Ogumi, Z.-I. Takehara, K. Katakura, S. Ichikawa, and Y. Yamamoto, "Oxygen Permeation Through Perfluorinated Carboxylate Ion Exchange Membranes", Electrochim. Acta, 1993, 38, 1727-1731. https://doi.org/10.1016/0013-4686(93)85069-B