DOI QR코드

DOI QR Code

Ameliorative or corrective effects of Fig "Ficus carica" extract on nickel-induced hepatotoxicity in Wistar rats

  • Nemiche, Souhila (Laboratory of Experimental Bio-Toxicology, Bio-Depollution and Phyto-Remediation, Department of Biology, Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella) ;
  • Hamadouche, Nadia Ait (Laboratory of Experimental Bio-Toxicology, Bio-Depollution and Phyto-Remediation, Department of Biology, Faculty of Nature and Life Sciences, University of Oran 1 Ahmed Ben Bella) ;
  • Nemmiche, Said (Department of Biology, Faculty of Nature and Life Sciences, University of Mostaganem) ;
  • Fauconnier, Marie‑Laure (Laboratory of General and Organic Chemistry, University of Liege, Gembloux Agro-Bio Tech) ;
  • Tou, Abdenacer (Service of Pathology, University Hospital of Sidi Bel Abbes)
  • Received : 2021.09.03
  • Accepted : 2021.11.30
  • Published : 2022.07.15

Abstract

Many heavy metals and metalloids (e.g., Pb, Cd, and Ni) can contaminate the environment and cause severe health problems. Through this study, investigated the possible corrective effects of Ficus carica extract (FCE) against nickel (Ni) induced stress response and damage on the liver of rats. Male Wistar rats were divided into four groups (8 rats per group) and co-treated with FCE (350 mg/kg) and exposed to Nickel chloride (10 mg/kg) for 4 weeks. The volatile compounds of FCE were characterized by solid phase micro-extraction (SPME) coupled with GC-MS, and the biochemical parameters of stress were determined. The SPME-GC/MS analysis of FCE indicated the presence of thirty (30) phyto-bioactive compounds including alcohols, aldehydes, organic acids, ketones, furans, terpenes, ester and others. The best capacity for scavenging DPPH free radicals and metal chelating were found with the IC50 values of 0.49 and 2.91 mg/mL, respectively. Ni induced damage to various macromolecules. Malondialdehyde, protein carbonyls, alanine aminotransferase and gamma glutamyl transferarse levels were significantly increased in Ni exposed group compared to control group and co-treatment with FCE reduced the levels of these parameters. In conclusion, current findings showed that Ni-induced oxidative damage and the administration of FCE can improve correct and restore the alteration in the rat liver.

Keywords

References

  1. Lakshmi P, Tajdar HK, Tamanna J, Sarwat S (2006) Chemo-modulatory effects of Terminalia chebula against nickel chloride induced oxidative stress and tumor promotion response in male Wistar rats. J Trace Elem Med Biol 20:233-239. https://doi.org/10.1016/j.jtemb.2006.07.003
  2. Nemmiche S (2017) Oxidative signaling response to cadmium exposure. Toxicol Sci 156:4-10. https://doi.org/10.1093/toxsci/kfw222
  3. Kumar A, Jigyasu DK, Kumar A, Subrahmanyam G et al (2021) Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. Chemosphere 275:129996. https://doi.org/10.1016/j.chemosphere.2021.129996
  4. Nabinger DD, Altenhofen S, Rodrigues Bitencourt PE, Nery LR, Leite CE, Moreira R et al (2018) Nickel exposure alters behavioral parameters in larval and adult zebrafish. Sc Total Environ 624:1623-1633. https://doi.org/10.1016/j.scitotenv.2017.10.057
  5. Song X, Fiati Kenstona SS, Kong L, Zhao J (2017) Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology 392:47-54. https://doi.org/10.1016/j.tox.2017.10.006
  6. International Agency for Research on Cancer (2012) IARC monographs: arsenic, metals, Fibres, Dusts (100C)
  7. Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35-56. https://doi.org/10.1016/S1040-8428(01)00214-1
  8. Das KK, Chandramouli RR, Bagoji I, Das S et al (2018) Primary concept of nickel toxicity-an overview. J Basic Clin Physiol Pharmacol 30:141-152. https://doi.org/10.1515/jbcpp-2017-0171
  9. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17:679. https://doi.org/10.3390/ijerph17030679
  10. Filatova D, Cherpak C (2020) Mechanisms of nickel-induced cell damage in allergic contact dermatitis and nutritional intervention strategies. Endocr Metab Immune Disord Drug Targets 20:1010-1014. https://doi.org/10.2174/1871530320666200122155804
  11. Singh A, Kumar M, Kumar V, Roy D et al (2019) Effects of nickel supplementation on antioxidant status, immune characteristics, and energy and lipid metabolism in growing cattle. Biol Trace Elem Res 190:65-75. https://doi.org/10.1007/s12011-018-1524-6
  12. Guo H, Liu H, Wu H, Cui H et al (2019) Nickel carcinogenesis mechanism: DNA damage. Int J Mol Sci 20:4690. https://doi.org/10.3390/ijms20194690
  13. Hfaiedh N, Allaqui MS, Croute F, Soleilhavoup JP, Jmmoussi K, Makniayadi F et al (2005) Interaction du jeune intermittent sur les effets cytotoxiques renaux du nickel chez le rat pubere. C R Biol 328:648-660. https://doi.org/10.1016/j.crvi.2005.03.001
  14. Chen H, Giri NC, Zhang R, Yamane K, Zhang Y, Maroney M et al (2017) Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem 292:10743. https://doi.org/10.1074/jbc.M109.058503
  15. Renu K, Chakraborty R, Myakala H et al (2021) Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity-a review. Chemosphere 271:129735. https://doi.org/10.1016/j.chemosphere.2021.129735
  16. Zambelli B, Uversky VN, Ciurli S (2016) Nickel impact on human health: an intrinsic disorder perspective. Biochim Biophys Acta Protein Proteonomics 1864:1714-1731. https://doi.org/10.1016/j.bbapap.2016.09.008
  17. Barolo MI, Ruiz Mostacero N, Lopez SN (2014) Ficus carica L. (Moraceae): an ancient source of food and health. Food Chem 164:119-127. https://doi.org/10.1016/j.foodchem.2014.04.112
  18. Vinson JA, Zubik L, Bose P, Samman N, Proch J (2005) Dried fruits: excellent in vitro and in vivo antioxidants. J Am Coll Nutr 24:44-50. https://doi.org/10.1080/07315724.2005.10719442
  19. Oliveira AP, Valentao P, Jose AP, Branca MS, Fernando T, Andrade PB (2009) Ficus carica L.: metabolic and biological screening. Food Chem Toxicol 47:2841-2846. https://doi.org/10.1016/j.fct.2009.09.004
  20. Guarrera PM (2005) Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia 76:1-25. https://doi.org/10.1016/j.ftote.2004.09.006
  21. Hira S, Gulfraz M, Saqlan Naqvi SM, Qureshi RU, Hina G (2021) Protective effect of leaf extract of Ficus carica L. against carbon tetrachloride-induced hepatic toxicity in mice and HepG2 cell line. Trop J Pharm Res 20:113-119. https://doi.org/10.4314/tjpr.v20i1.17
  22. Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT (2014) Traditional uses, phytochemistry and pharmacology of Ficus carica: a review. Pharm Biol 52:1487-1503. https://doi.org/10.3109/13880209.2014.892515
  23. Lansky EP, Paavilainen HM, Pawlus AD, Newman RA (2008) Ficus spp. (fg): ethnobotany and potential as anticancer and antiinfammatory agents. J Ethnopharmacol 119:195-213. https://doi.org/10.1016/j.jep.2008.06.025
  24. Yang XM, Yu W, Ou ZP, Ma HL, Liu WM, Ji XL (2009) Antioxidant and immunity activity of water extract and crude polysaccharide from Ficus carica L. fruit. Plant Foods Hum Nutr 64:167-173. https://doi.org/10.1007/s11130-009-0120-5
  25. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144-158 https://doi.org/10.5344/ajev.1965.16.3.144
  26. Dae-Ok K, Ock Kyoung C, Young Jun K, Hae-Yeon M, Chang YL (2003) Quantifcation of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem 51:6509-6515. https://doi.org/10.1021/jf0343074
  27. Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213-217. https://doi.org/10.1021/jf00062a013
  28. Arthur Catherine L, Janusz P (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145-2148. https://doi.org/10.1021/ac00218a019
  29. Heimler D, Vignolini P, Dini MG, Romani A (2005) Rapid tests to assess the antioxidant activity of Phaseolus vulgaris L. dry beans. J Agric Food Chem 53:3053-3056. https://doi.org/10.1021/jf049001r
  30. Decker EA, Welch B (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38:674-677. https://doi.org/10.1021/jf00093a019
  31. Mohan GK, Pallavi E, Ravi Kumar B, Ramesh M, Venkatesh S (2007) Hepatoprotective activity of Ficus carica Linn. leaf extract against carbon tetrachloride-induced hepatotoxicity in rats. DARU J Pharm Sci 15:162-166
  32. Das KK, Buchner V (2007) Effect of nickel exposure on peripheral tissues: role of oxidative stress in toxicity and possible protection by ascorbic acid. Rev Environ Health 22:157. https://doi.org/10.1515/reveh.2007.22.2.157
  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annal Biochem 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  34. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121-126. https://doi.org/10.1016/s0076-6879(84)05016-3
  35. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  36. Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212-216. https://doi.org/10.1016/0006-2944(76)90049-1
  37. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  38. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464-478. https://doi.org/10.1016/0076-6879(90)86141-h
  39. Perez-Lopez FR, Chedraui P, Haya J, Cuadros JL (2009) Effects of the Mediterranean diet on longevity and age-related morbid conditions. Maturitas 64:67-79. https://doi.org/10.1016/j.maturitas.2009.07.013
  40. Cempel M, Janicka K (2002) Distribution of nickel, zinc and copper in rat organs after oral administration of nickel (II) chloride. Biol Trace Elem Res 90:215-226. https://doi.org/10.1385/BTER:90:1-3:215
  41. Debib A, Tir-Touil A, Mothana RA, Meddah B, Sonnet P (2014) Phenolic content, antioxidant and antimicrobial activities of two fruit varieties of Algerian Ficus carica L. J Food Biochem 38:207-215. https://doi.org/10.1111/jfbc.12039
  42. Del Caro A, Piga A (2008) Polyphenol composition of peel and pulp of two Italian fresh fig fruits cultivars (Ficus carica L.). Eur Food Res Technol 226:715-719. https://doi.org/10.1007/s00217-007-0581-4
  43. Duenas M, Perez-Alonso JJ, Santos-Buelga C, Escribano-Bailon T (2008) Anthocyanin composition in fig (Ficus carica L.). J Food Compos Anal 21:107-115. https://doi.org/10.1016/j.jfca.2007.09.002
  44. Amamou F, Nemmiche S, Meziane RK, Didi A, Yazit SM, Chabane-Sari D (2015) Protective effect of olive oil and colocynth oil against cadmium-induced oxidative stress in the liver of Wistar rats. Food Chem Toxicol 78:177-184. https://doi.org/10.1016/j.fct.2015.01.001
  45. Gilani AH, Malik HM, Khalid HJ, Arif-ullah K, Sheikh Arshad S (2008) Ethnopharmacological studies on antispasmodic and antiplatelet activities of Ficus carica. J Ethnopharmacol 119:1-5. https://doi.org/10.1016/j.jep.2008.05.040
  46. Veberic R, Mateja C, Franci S (2008) Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem 106:153-157. https://doi.org/10.1016/j.foodchem.2007.05.061
  47. Russo F, Nicola C, Antonello P, Raffaele S (2017) Characterisation of volatile compounds in Cilento (Italy) figs (Ficus carica L.) cv. Dottato as affected by the drying process. Int J Food Prop 20:1366-1376. https://doi.org/10.1080/10942912.2017.1344991
  48. Oliveira AP, Luis RS, Guedes de Pinho P, Gil-Izquierdo A, Valentao P, Branca MS, Pereira JA, Andrade PB (2010) Volatile profling of Ficus carica varieties by HS-SPME and GC-IT-MS. Food Chem 123:548-557. https://doi.org/10.1016/j.foodchem.2010.04.064
  49. Terpinc P, Tomaz P, Hanzlowsky NSA, Ulrih NP, Abramovic H (2011) Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acids. Food Chem 128:62-69. https://doi.org/10.1016/j.foodchem.2011.02.077
  50. Vuuren SFV, Viljoen AM (2007) Antimicrobial activity of limonene enantiomers and 1, 8-cineole alone and in combination. Flavour Fragr J 22:540-544. https://doi.org/10.1002/fj.1843
  51. Chavan MJ, Wakte PS, Shinde DB (2010) Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. bark. Phytomedicine 17:149-151. https://doi.org/10.1016/j.phymed.2009.05.016
  52. Hennia A, Nemmiche S, Dandlen S, Graca Miguel M (2019) Myrtus communis essential oils: insecticidal, antioxidant and antimicrobial activities: a review. J Essent Oil Res 31:487-545. https://doi.org/10.1080/10412905.2019.1611672
  53. Viuda-Martosa X, Barberb J, Perez-Alvareza A, Fernandez-Lopeza J (2015) Assessment of chemical, physico-chemical, techno-functional and antioxidant properties of fig (Ficus carica L.). Ind Crops Prod 69:472-479. https://doi.org/10.1016/j.indcrop.2015.03.005
  54. Gathwan KH, Al-Karkhi IHT, AL-Mulla EAJ (2013) Hepatic toxicity of nickel chloride in mice. Res Chem Intermed 39:2537-2542. https://doi.org/10.1007/s11164-012-0780-x
  55. Samir D, Zine K (2013) Preventive efect of zinc on nickel-induced oxidative liver injury in rats. Afr J Biotech 12:7112-7119. https://doi.org/10.5897/AJB2013.12962
  56. Rao MV, Chawla SL, Sharma SR (2009) Protective role of vitamin E on nickel and/or chromium induced oxidative stress in the mouse ovary. Food Chem Toxicol 47:1368-1371. https://doi.org/10.1016/j.fct.2009.03.018
  57. Sindhu P, Garg ML, Morgenstern P, Vogt PJ, Butz T, Dhawan DK (2004) Role of zinc in regulating the levels of hepatic elements following nickel toxicity in rats. Biol Trace Elem Res 102:161-172. https://doi.org/10.1385/BTER:102:1-3:161
  58. Winter MJ, Verweij F, Garofalo E, Ceradini S, Mckenzie EJ, Williams MA et al (2005) Tissue levels and biomarkers of organic contaminants in feral and caged chub (Leuciscus cephalus) from rivers in the West Midlands, UK. Aquat Toxicol 73:394-405. https://doi.org/10.1016/j.aquatox.2005.05.001
  59. Turan A, Celik I (2016) Antioxidant and hepatoprotective properties of dried fig against oxidative stress and hepatotoxicity in rats. Int J Biol Macromol 91:554-559. https://doi.org/10.1016/j.ijbiomac.2016.06.009
  60. Pari L, Amudha K (2011) Hepatoprotective role of naringin on nickel-induced toxicity in maie Wistar rats. Eur J Pharmacol 650:364-370. https://doi.org/10.1016/j.ejphar.2010.09.068
  61. Hfaiedh N, Allaqui MS, Hfaiedh M, El Feki A, Zourgui L, Croute F (2008) Protective effect of cactus (Opuntia fcus indica) cladode extract upon nickel-induced toxicity in rats. Food Chem Toxicol 46:3759-3763. https://doi.org/10.1016/j.fct.2008.09.059
  62. Saoudi M, El Feki A (2012) Protective role of Ficus carica stem extract against hepatic oxidative damage induced by methanol in male Wistar Rats. Evid Based Complement Alternat Med 2012:150458. https://doi.org/10.1155/2012/150458
  63. Aghel N, Kalantari H, Rezazadeh S (2011) Hepatoprotective effect of Ficus carica leaf extract on mice intoxicated with carbon tetrachloride. Iran J Pharma Res 10:63-68. PMCID: PMC3869579