DOI QR코드

DOI QR Code

Synthesis and Properties of Eco-friendly Waterborne Polyurethane according to Bio-polyol Contents

바이오폴리올 함량에 따른 친환경 수분산 폴리우레탄의 합성 및 특성

  • Chang, Yoon Hee (Korea Institute of Footwear & Leather Technology) ;
  • Jeong, Boo-Young (Korea Institute of Footwear & Leather Technology) ;
  • Cheon, JungMi (Korea Institute of Footwear & Leather Technology) ;
  • Chun, Jae Hwan (Korea Institute of Footwear & Leather Technology) ;
  • Huh, PilHo (Department of Polymer Science and Engineering, Pusan National University)
  • Received : 2022.03.07
  • Accepted : 2022.05.24
  • Published : 2022.06.30

Abstract

In this study, we report on the synthesis and properties of eco-friendly waterborne polyurethane (WPU) according to bio-polyol contents. It was successfully synthesized by the different polyester polyol (DT-1040) and castor oil based polyol (COP) ratios. The glass transition temperature (Tg) of the synthesized bio polyol based waterborne polyurethane was around -70 ℃ and -30 ℃, and it was confirmed that the Tg range was widened as the COP content increased. In addition, as the COP content increased, the tensile strength decreased, and optimum adhesive strength showed when DT-1040:COP ratio was 7:3.

본 연구에서는bio polyol 함량에 따라 bio polyol based 친환경 수분산 폴리우레탄을 합성하고 그 특성을 알아보고자 하였다. Polyester polyol(DT-1040)과 castor oil based polyol(COP)의 비율에 따른 bio polyol based 수분산 폴리우레탄을 성공적으로 합성한 것을 확인할 수 있었다. 합성된 bio polyol based 수분산 폴리우레탄의 Tg는 -70 ℃와 -30 ℃ 부근에서 나타났으며, COP의 함량이 증가할수록 유리전이온도 구간이 넓어지는 것을 확인할 수 있었다. 또한, COP의 함량이 증가할수록 인장강도는 감소하였고, 접착력은 DT-1040:COP=7:3일 때 최고값을 나타내었다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 소재부품기술개발사업(과제번호: 20014436)의 연구비 지원에 의해 일부 수행되었으며, 이에 감사드립니다.

References

  1. S. H. Lee, K. I. Kim, J. S.Oh, M. J. Yun, S. B. Kim, KIGAS Vol.16, No.5, pp66~75 (2012).
  2. C. Hepburn, Poluurethane Elastomers, Elsevier, New York (1991).
  3. G. Oetel, Polyurethane Handbook, Haser, Cincinnati (1994).
  4. H. C. Kong, Y. K. Jhon, I. W. Cheong, J.H. Kim Adhesion and Interface Vol 3, No.2, (2002).
  5. C. K. Kim, B. K. Kim, J. Appl. Polym. Sci., 43, 2295 (1991). https://doi.org/10.1002/app.1991.070431219
  6. G. Vertel, Polyurethane, 2nd ed, HanserPub., New York (1994).
  7. S. H. Lee, J. M. Cheon, B. Y. Jeong, H. D. Kim, J. H. Chun, Adhesion and Interface Vol 16, No.4, (2015).
  8. B. E. Dale, J Chem Technol Biotechnol, 78:1093-1103(2003). https://doi.org/10.1002/jctb.850
  9. Kim, C.K., and Kim, B. K., J. Appl. Polym. Sci., 43, 2295-2301 (1991). https://doi.org/10.1002/app.1991.070431219
  10. S. H. Lee and S. Wang, Compos, Pt. A-Appl. Sci. Manuf, 37, 80 (2006). https://doi.org/10.1016/j.compositesa.2005.04.015
  11. A. Demirbas, Energy Edu. Sci. Technol., 17, 27(2006).
  12. L. Gouveia and A. C. Oliveira, J. Ind. Microbiol. Biotechnol., 36, 269 (2009). https://doi.org/10.1007/s10295-008-0495-6
  13. J. Y. Lee, Journal of the Korean Applied Science and Technology, Vol.38, No.6, pp1533~1542 (2021). https://doi.org/10.12925/JKOCS.2021.38.6.1533
  14. A. Guo, W. Zhang, Z. S. Petrovic, J. Mater. Sci., 41, 4914 (2006). https://doi.org/10.1007/s10853-006-0310-6
  15. D. H. Lee, J. M. Cheon, B. Y. Jeong, S. Y. Park, J. H. Chun, W. K. Lee, Polym. Vol.44, No.3, pp.318-324 (2020).
  16. L. Zhang, H. K. Jeon, J. Malsam, R. Herrington, C. W. Macosko, Polymer, 48, 6656 (2007). https://doi.org/10.1016/j.polymer.2007.09.016
  17. A. Terheiden, R. Hubel, PU Magazine International, 5, 279 (2010).
  18. S. M. Kim, N. S. Kwak, Y. K. Yang, B. K. Yim, B. Y. Park, T. S. Hwang, Polymer, Vol.29, No.3, pp253~259, (2005).
  19. J. H. Bae, E. Y. Kim, K. S. Kang, D. J. Park, Adhesion and Interface Vol.18, No.4, (2017).