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Abstract. The work realized by the authors of [4], [5] and [6] associates a non-negative

matrix with positive integers entries to each dissection of a polygon. In the particular case

of triangulations, these matrices called BCI-matrices here contain valuable information of

their frieze patterns, a concept introduced by Coxeter and Conway. This paper is con-

cerned with the algebraic manipulation and properties of these matrices which are derived

from operations acting on dissections.

1. Introduction

The Broline-Crowe-Isaacs matrices were introduced in [6] in order to under-
stand the geometry of Coxeter’s frieze patterns of positive integers. These last
objects are arrays of positive integers in which neighbouring values are linked by a
fixed rule. The origin of these structures goes back to Gauss’s work on the penta-
gramma mirificum. Initially, Coxeter found some connections between friezes pat-
terns and various objects such as cross ratios, continued fractions and Farey series.
Subsequently, Coxeter and Conway discovered a one-to-one correspondence between
friezes of positive integers and triangulations of convex polygons, more exactly, they
established a one-to-one correspondence between a periodic finite sequence called
quiddity sequence of the first row of the frieze patterns and the triangulations of
convex polygons (see [9]). More recently, frieze patterns appeared in other contexts,
for instance in the fields of cluster algebras [7] and of Nichols algebras [10], see also
[11] to know some generalizations of these structures.

In order to understand the geometric meaning of the remaining rows of a frieze
patterns Broline, Crowe and Isaacs defined for each frieze pattern of positive integers
a symmetric matrix whose entries constitute the triangular fundamental domain of
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290 Raúl Felipe

the frieze pattern (see [12] for details). These matrices were extended and studied
for any d-angulation of polygons by Bessenrodt, Holm and Jorgensen in [4] and for
the case of arbitrary dissections by Bessenrodt [5]. A notable computation in all the
mentioned works is that of the determinant of the matrices associated to polygon
dissections. In this direction, we must indicate the work of Baur and Marsh [2]
where the determinant of a certain Broline-Crowe-Isaacs type matrix which appears
in connection with the corresponding frieze pattern of cluster variables arising from
the Fomin-Zelevinsky cluster algebra of type A was calculated.

We start with some definitions.
A real matrix L is said to be non-negative whenever all the entries of L are

nonnegative. We use the notation L ≥ 0 to indicate this fact. It is evident that
if L is a non-negative matrix then its transpose matrix Lt is also nonnegative.
In our work, we will only consider non-negative matrices of arbitrary order whose
off-diagonal entries are positive integers, and which have the following form

(1.1) L =



0 1 l13 · · · l1(n−1) 1

1
. . .

. . .
. . .

. . . l2n

l31
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . l(n−3)n

l(n−1)1

. . .
. . .

. . .
. . . 1

1 ln2 · · · ln(n−3) 1 0


,

when, lij ̸= 0 if |j−i| ≥ 2 and L = Lt. Moreover these matrices have zeros along the
principal diagonal and the first diagonals above and below the principal diagonal
are 1. Besides this, l1n = ln1 = 1.

The set of all matrices of this form will be denoted by M(N) and the subset of
matrices of order n by M(N)n. For two matrices L1,L2 ∈ M(N)n we write L1 ≤ L2

if (L1)ij ≤ (L2)ij for all i, j = 1, . . . , n. This partial order makes to M(N)n a
poset and is called the normal order. The elements of the set M(N) will be called
M-matrices.

Matrices of type (1.1) appear as distance matrices which are a natural tool to
describe finite metric spaces, see [13].

We recall that the anti-diagonal of a matrix is the diagonal going from the lower
left corner to the upper right corner (↗). For an arbitrary matrix K, we denote
the transpose matrix with respect to the anti-diagonal by Kτ , that is, Kτ = JKtJ
being Kt its usual transpose and J is the matrix with entries 1 on the anti-diagonal
and 0 else. Observe that the equalities (Kτ )τ = K and |Kτ | = |K| hold. Moreover,
if L ∈ M(N) then Lτ ∈ M(N).

In the first part of the rest of this section, we proceed to indicate how the space
M(N)n is related to the set of dissections of an n-gon. In [6], Broline, Crowe and
Isaacs assigned a M-matrix in M(N)n to each triangulation of a convex n-gon. In
fact, if T is a triangulation of a convex n-gon, and we fix a numbering of vertices
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and an order to go around the polygon, then there is a unique matrix MT ∈ M(N)n
containing the main information of the Coxeter frieze pattern of this triangulation
(the reader interested in learning the basic theory and recent developments about
frieze patterns can consult [6], [9] and [12]).

Next, we briefly recall the construction of these matrices for an arbitrary d-
angulation due to Bessenrodt, Holm and Jorgensen [4], where 3 ≤ d which in the
particular case of d = 3 coincides with that given by Broline, Crowe and Isaacs
in [6]. Immediately after, we then illustrate this giving the Broline-Crowe-Isaacs
matrices (or in short form, simply the BCI-matrices) for some d-angulations.

Henceforth, the vertices of all n-gons under discussion are labeled counterclock-
wise by the numbers from 1 to n (for convenience we identify the vertex 1 with n+1
and the vertex n with 0).

By a dissection D of a convex n-gon Pn we mean a division of Pn through m−1
pairwise noncrossing diagonals into m nonoverlapping polygons P1

n, . . . ,P
m
n called

the pieces of the dissection. We use the notation D = (P1
n, . . . ,P

m
n ) in order to

specify the dissection. If each piece of the dissection is a d-gon we say that it is a
d-angulation denoted by Hd, in this case n = d + (m − 1)(d − 2). In particular, if
d = 3 we have a triangulation for an n-gon. For the case m − 1 = 0 or n = d one
has the empty dissection which will be denoted by Dn

∅ .

Example 1.1. Let n = 10, m − 1 = 3 and d = 4; a possible 4-angulation of the
10-gon is the following:

(1.2)

1
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7
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9

10

α

α

β

δ
λ

.

Suppose n = d + (m − 1)(d − 2) for some d ≥ 3 and (m − 1) ∈ N \ {0}; let
Hd be a d-angulation of an n-gon Pn, and let i and j vertices of Pn, such that
i + 1 ≤ j. Indices and vertices are always taken to be reduced modulo n. A
sequence w = (Qi+1, . . . ,Qj−1) of pieces of Hd is called a (counterclockwise) d-path
from i to j if it satisfies the following properties

1. The d-gon Qk is incident to vertex k for all k ∈ {i+ 1, i+ 2, . . . , j − 1}.

2. In the sequence Qi+1,Qi+2, . . . ,Qj−2,Qj−1, each d-gon of Hd appears at most
d− 2 times.

For i + 1 ≤ j the number of (counterclockwise) d-paths from i to j is denoted
mi,j . In addition, we set mi,i = 0, mi,(i+1) = m(i+1),i = 1. Then, following [4]
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we introduce the M-matrix of order n× n, MHd
associated to the d-angulation Hd

as MHd
= (mi,j)1≤i.j≤n. As mentioned earlier, this will be called the BCI-matrix

corresponding to Hd.

This construction is a direct generalization of the one proposed in [6] for triangu-
lations. In [4], it is proved that MHd

is a symmetric matrix. Also, in theorem 1.2 of
[4] the authors proved that |MHd

| = (−1)n−1(d−1)m, where n = d+(m−1)(d−2),
and m is the number of pieces of the d-angulation Hd of n-gon Pn. For the case
d = 3 andm = n−2 this determinant reduces to the well known formulae of Broline,
Crowe and Isaacs: |MT| = |MH3 | = −(−2)n−2.

For the example 1.1, we compute some mij and give the corresponding 4-paths
(see [4], example 2.3 for more details). We remember that by definition no quad-
rangle is allowed to appear more than twice in a 4-path. Let i = 2 and j = 6. At
the vertices 3 and 4 we must take the quadrangle λ while at the vertex 5 we can
choose β or δ. Thus, the only 4-paths from vertex 2 to vertex 6 are (λ, λ, δ) and
(λ, λ, β), hence m2,6 = 2. Now, let i = 4 and j = 9. At both vertices 6 and 7 we
have to choose β. Since in all 4-path, each quadrangle appears at the most 2 times,
then λ or δ can be taken at the vertex 5 and δ or α for the vertex 8. So we get four
4-paths from vertex 4 to vertex 9:(λ, β, β, δ); (λ, β, β, α); (δ, β, β, α) and (δ, β, β, δ).
Hence, we have m4,9 = 4.

For this 4-angulation H4 of P10 (see [4]), the complete BCI-matrix MH4 has
the following form

(1.3) MH4
=



0 1 2 2 1 2 2 1 1 1
1 0 1 1 1 2 2 1 2 2
2 1 0 1 1 3 3 2 4 4
2 1 1 0 1 3 3 2 4 4
1 1 1 1 0 1 1 1 2 2
2 2 3 3 1 0 1 1 3 3
2 2 3 3 1 1 0 1 3 3
1 1 2 2 1 1 1 0 1 1
1 2 4 4 2 3 3 1 0 1
1 2 4 4 2 3 3 1 1 0


,

for which |MH4
| = −81 = (−1)9(4− 1)4.

We give another example
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Example 1.2. For the following triangulation T = H3 of the hexagon

(1.4)

1

2

3

4

5

6

,

the BCI-matrix is

(1.5) MT = MH3 =


0 1 1 1 2 1
1 0 1 2 5 3
1 1 0 1 3 2
1 2 1 0 1 1
2 5 3 1 0 1
1 3 2 1 1 0

 ,

in this case, |MT=H3
| = −16 = −(−2)6−2.

We now concentrate on the notion of BCI-matrix of an arbitrary dissection as
introduced in [5]. Let D = {P1

n, . . . ,P
m
n } be a dissection through m nonoverlapping

polygons of an n-gon Pn, C. Bessenrodt [5] (see also [12]) introduced the notion of
(counterclockwise) walk.

A walk from i to j, where i+1 ≤ j, is a sequence w = (Qi+1, . . . ,Qj−1) of pieces
of D such that

1. The polygon Qk is incident to vertex k for all k ∈ {i+ 1, i+ 2, . . . , j − 1}.

2. Every polygon Q of D appears at most dQ − 2 times among the pieces
Qi+1,Qi+2, . . . ,Qj−2,Qj−1 where dQ is the size of Q.

This definition of walk agrees with the notion of d-path when the dissection
D is a d-angulation Hd. By counting the walks between two vertices i and j we
can define mi,j as the number of walks from vertex i to vertex j. Also, we have
mi,i = 0 and mi,(i+1) = m(i+1),i = 1. In this way, one gets also a symmetric matrix
MD ∈ M(N)n for each dissection D of Pn for which the determinant is:

(1.6) |MD| = (−1)n−1
m∏

k=1

(dk − 1),

and MD will be called the BCI-matrix associated to the dissection D (see theorem
2.3 in [5] for more details) as in the case of d-angulation.
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In what follows, a walk form i to j will be denoted by wi−→j or wi−→j(P,D)
indicating the dependence on the polygon P and on its dissection D.

Now, in order to illustrate the definitions of walk and of BCI-matrix for dissec-
tions which are not d-angulations, we reproduce the example 2.2 of [5].

Example 1.3. Consider a dissection D of a 7-gon formed with three triangles and
a quadrangle:

(1.7)
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6
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δ

δ

β

α
1 7

.

By definition in any walk a triangle can appear at most once and the quadrangle
at most 2 times. We indicate the walks from vertex 1 to any vertex j > 2 and with
this purpose we will use the notation 1 −→ j to indicate the set of all walks from
the vertex 1 to the vertex j:

1 −→ 3 (α), (β),

1 −→ 4 (α, β), (α, λ), (β, β), (β, λ),

1 −→ 5 (α, β, λ),(β, β, λ),(α, β, δ), (α, λ, δ), (β, β, δ), (β, λ, δ),

1 −→ 6 (α, β, λ, δ),(β, β, λ, δ),

1 −→ 7 (α, β, λ, δ, β).

For this dissection D of P7 the BCI-matrix is

(1.8) MD =



0 1 2 4 6 2 1
1 0 1 2 3 1 1
2 1 0 1 2 1 1
4 2 1 0 1 1 2
6 3 2 1 0 1 3
2 1 1 1 1 0 1
1 1 1 2 3 1 0


,

and |MD| = 24 = (−1)6 · 2 · 3 · 2 · 2.
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Observe that the BCI-matrix of order n associated to the empty dissection Dn
∅

of an n-gon is

MDn
∅
=



0 1 · · · · · · 1

1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1

1 · · · · · · 1 0


,

with determinant |MDn
∅
| = (−1)n−1(n−1) which shall be called the emptyM-matrix

of order n (or the empty BCI-matrix). Of course Mτ
Dn

∅
= MDn

∅
for all n.

This article is organized as follows, in this introduction we have briefly remem-
bered the notion of Broline-Crowe-Isaacs matrix (BCI-matrix) for triangulations
and dissections in general. Formulas of the determinant of these matrices were also
presented and the BCI-matrices corresponding to some dissections were calculated.
In the second section, we introduce on the set MD of all Broline-Crowe-Isaacs ma-
trices a SET operad structure. Section three is reserved to study BCI-matrices
through the notion of outer chains of vertices for dissections. In the last section, we
introduce and study the concept of enlargement for M-matrices which allows us to
construct BCI-matrices by means of others BCI-matrices of a lower order.

We wish to add that this paper is confined to the study of linear
algebra of the set of BCI-matrices. As future work we have the intention of to
find relationships of the present research with some modern tools mentioned above
such as the cluster algebras, Nichols algebras, etc.

We conclude this introduction by summarizing the principal contributions of
this work :

1. Broline-Crowe-Isaacs matrices are difficult and cumbersome to calculate fol-
lowing the usual procedure of to find the number of paths between two specific
vertices, especially in the cases of dissections of n-gons in which n is large.
In our paper, we show how to construct BCI-matrices of another of smaller
dimension through some operations called by us enlargement. We present
several types of these operations. In practice it is ‘enough’ to know these
matrices in low dimensions.

2. We show a link between the class of polygon dissections and a certain variant
of the operad theory. This reveals the possibility that many known structures
containing others of Catalan-type can be treated from the perspective of the
operad theory.

3. The form of the BCI-matrices is studied through the optics of the outer chains
of vertices of their corresponding dissections.
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2. First Results

Denote by MD the set of all M-matrices associated to dissections of polygons,
that is, MD is the set of all BCI-matrices. Also, let us denote byMD(N)n the subset
MD ∩M(N)n. On other hand, let Dn be the set of all dissections of an n-gon Pn,
and for those formed with m−1 non-crossing diagonals, where 0 ≤ m−1 ≤ n−3, we
reserved the notation Dn(m−1). Finally, MD(N)n(m−1) is the set of BCI-matrices
associated to the dissections of Dn(m− 1).

For convenience a point and a segment should be considered polygons with
one and two vertices respectively and let us denote these by P1 and P2. We can
define formal dissections for P1 and P2. Thus, D1 is the generalized dissection
formed by a point labeled by 1, and D2 consists of the generalized dissection formed
by two points labeled by 1 and 2 and connected by a line segment. We assign
MD(N)1 = {MD1

} and MD(N)2 = {MD2
} where

MD1
= M1

∅ = (0), MD2
= M2

∅ =

(
0 1
1 0

)
.

Note that working with polygons with n vertices which are labeled counter-
clockwise by the set [n] implies that we have an one-to-one correspondence between
Dn and MD(N)n. Hence, we also have a one-to-one correspondence between MD

and the set of all dissections D.
Let P be an n-gon. In order to avoid excessive graphics we use the notation

(i, j) to indicate the diagonal connecting the vertex i to the vertex j and denote
by Dn

[(i1,j1),...,(ik,jk)]
with 1 ≤ k ≤ n − 3, the dissection built with the noncrossing

diagonals (i1, j1), . . . , (ik, jk) which we say shape the dissection. In general, if X is
a set of noncrossing diagonals of an n-gon then Dn

X will denote the corresponding
dissection.

We return to the BCI-matrices. Clearly MD(N)3 = {MD3
∅
}. We continue

calculating MD(N)4 and MD(N)5. It is easy to see that MD(N)4 is the set formed
by the matrices

MD4
∅
=


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , MD4
[(1,3)]

=


0 1 1 1
1 0 1 2
1 1 0 1
1 2 1 0

 , MD4
[(2,4)]

=


0 1 2 1
1 0 1 1
2 1 0 1
1 1 1 0

 .

On other hand, a simple checking shows that MD(N)5 is composed of MD5
∅
and

the following matrices

MD5
[(1,4)]

=


0 1 1 1 1
1 0 1 1 2
1 1 0 1 2
1 1 1 0 1
1 2 2 1 0

 , MD5
[(1,3)]

=


0 1 1 1 1
1 0 1 2 2
1 1 0 1 1
1 2 1 0 1
1 2 1 1 0

 ,
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MD5
[(2,4)]

=


0 1 2 1 1
1 0 1 1 1
2 1 0 1 2
1 1 1 0 1
1 1 2 1 0

 , MD5
[(3,5)]

=


0 1 1 2 1
1 0 1 2 1
1 1 0 1 1
2 2 1 0 1
1 1 1 1 0

 ,

MD5
[(2,5)]

=


0 1 2 2 1
1 0 1 1 1
2 1 0 1 1
2 1 1 0 1
1 1 1 1 0

 , MD5
[(1,3),(1,4)]

=


0 1 1 1 1
1 0 1 2 3
1 1 0 1 2
1 2 1 0 1
1 3 2 1 0

 ,

MD5
[(1,4),(2,4)]

=


0 1 2 1 1
1 0 1 1 2
2 1 0 1 3
1 1 1 0 1
1 2 3 1 0

 , MD5
[(1,3),(3,5)]

=


0 1 1 2 1
1 0 1 3 2
1 1 0 1 1
2 3 1 0 1
1 2 1 1 0

 ,

and

MD5
[(2,4),(2,5)]

=


0 1 3 2 1
1 0 1 1 1
3 1 0 1 2
2 1 1 0 1
1 1 2 1 0

 , MD5
[(2,5),(3,5)]

=


0 1 2 3 1
1 0 1 2 1
2 1 0 1 1
3 2 1 0 1
1 1 1 1 0

 .

Note that

Mτ
D4

[(1,3)]
= MD4

[(2,4)]
, Mτ

D5
[(1,4)]

= MD5
[(2,5)]

, Mτ
D5

[(1,4),(2,4)]
= MD5

[(2,4),(2,5)]
.

The following remark is evident

Remark 2.4. Let MD be a BCI-matrix associated to the dissection D of an n-
gon. Then, (MD)τ is a BCI-matrix, that is, there is a dissection Dτ called the
transpose dissection of D such that (MD)τ = MDτ . Moreover, let n be arbitrary
and 0 ≤ m − 1 ≤ n − 3, suppose that MDn ∈ MD(N)n(m − 1), then (MDn)τ ∈
MD(N)n(m− 1).

We give an example

Example 2.5. It is immediate to see that the transpose dissection for (1.2) is the
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following dissection

(2.1)

2
3

4

5

6
7

8

9

10

1

.

The reader can easily verify that the corresponding BCI-matrix for this is the
matrix

(2.2) M(H4)τ =



0 1 1 3 3 2 4 4 2 1
1 0 1 3 3 2 4 4 2 1
1 1 0 1 1 1 2 2 1 1
3 3 1 0 1 1 3 3 2 2
3 3 1 1 0 1 3 3 2 2
2 2 1 1 1 0 1 1 1 1
4 4 2 3 3 1 0 1 1 2
4 4 2 3 3 1 1 0 1 2
2 2 1 2 2 1 1 1 0 1
1 1 1 2 2 1 2 2 1 0


,

which matches with (MH4
)τ .

Remark 2.6. Note that the transformation D −→ Dτ on polygons with the same
number of vertices maps a d-angulation in a d-angulation having both the same
number of pieces. In general, this transformation leaves invariant the number of
pieces. Moreover, it maintains invariant the number of triangles, rectangles, pen-
tagons, hexagons, etc. Thus, for all dissection D we have

(2.3) |MD| = |MDτ | = |(MD)τ |.

Also, this can be seen as follows |(MD)τ | = |J(MD)tJ | = |(MD)t| |J |2 = |MD|,
because |J |2 = 1.

Next, we introduce the notion of superposition in MD(N)n for n ≥ 5. Suppose
that D△,D▽ ∈ Dn. We say that the BCI-matrices MD△ ,MD▽ ∈ MD(N)n can be
superposed if D△ ∪D▽ ∈ Dn.

Definition 2.7. Suppose that the BCI-matrices MD△ ,MD▽ ∈ MD(N)n can be
superposed. In this case, we define the superposition product for these two matrices
of the following form

(2.4) MD△ ↭ MD▽ = MD△∪D▽ .
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Notice that ifD△ ∈ Dn(m△−1) andD▽ ∈ Dn(m▽−1), D△∪D▽ ∈ Dn(m△∪▽−1)
where m△∪▽ = m△ +m▽ − 1. Thus, MD△∪D▽ ∈ MD(N)n(m△∪▽ − 1).

It is clear that the product (2.4) is commutative and associative. Also, from
remark 2.4 we obtain

(MD△ ↭ MD▽)
τ = M(D△∪D▽)τ = M(D△)τ∪(D▽)τ = (MD△)

τ ↭ (MD▽)
τ .

Example 2.8. Let us pause a moment in the case n = 5. It is clear that MD5
∅
↭

MD5 = MD5 ↭ MD5
∅
= MD5 for all MD5 ∈ MD(N)5. On other hand, one can

easily check that

MD5
[(1,3)]

↭ MD5
[(1,4)]

= MD5
[(1,3),(1,4)]

,

MD5
[(1,4)]

↭ MD5
[(2,4)]

= MD5
[(1,4),(2,4)]

,

MD5
[(1,3)]

↭ MD5
[(3,5)]

= MD5
[(1,3),(3,5)]

,

MD5
[(2,4)]

↭ MD5
[(2,5)]

= MD5
[(2,4),(2,5)]

,

and

MD5
[(2,5)]

↭ MD5
[(3,5)]

= MD5
[(2,5),(3,5)]

.

Note that MD is not closed under the usual multiplication of matrices of same
order. This makes of interest the aim of finding suitable binary products on MD.

It is well known that in the category Set of sets one can define two different
types of operads: symmetric and nonsymmetric, depending on the presence or not
of actions of symmetric groups. Next, we introduce a nonsymmetric operad related
with the BCI-matrices.

Next, we abbreviate the set {1, 2, · · · , n− 1, n} to [n].

Definition 2.9. A nonsymmetric (ns) BCI-operad in Set is by definition a collection
of sets O(n)

(2.5) O =
⊔
n≥1

O(n),

together with partial composition maps

(2.6) ◦i : O(n)× O(m) −→ O(n+m− 1), n,m ≥ 1, i ∈ [n],

and a distinguished element 1 ∈ O(1), the unit of O, such that

(2.7) (x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z),

where x ∈ O(n), y ∈ O(m), z ∈ O(k), i ∈ [n] and j ∈ [m− 1], for m ≥ 2. Moreover

(2.8) (x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y,
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for x ∈ O(n), y ∈ O(m), z ∈ O(k), i, j ∈ [n] such that i < j and 1 < n. Finally

(2.9) 1 ◦1 x = x = x ◦i 1,

for x ∈ O(n) and i ∈ [n].

Our definition of nonsymmetric set operad is slightly different from the usual
definition (see [8]), because the value j = m has been excluded in the axiom (2.7).
This is why we call it BCI-operad. The reason for not including j = m in (2.7) will
be shown a little lower.

It is convenient in this section first to begin with dissections and then incorpo-
rate into the discussion the BCI-matrices corresponding to dissections of polygons.
As it was introduced above D =

⊔
n≥1 Dn. We recall that Dn is the set of all

dissections of an n-gon. Thus, D is the collection of all dissections of polygons.
Given two polygons Pn, Pm with n and m vertices respectively and i ∈ [n], we

can construct a polygon with n +m − 1 vertices Pn+m−1(i) of the following form:
one glues the vertex i ∈ [n] of Pn with the vertex 1 of Pm and connects the vertex
i + 1 of Pn with the vertex m of Pm by a line segment. The sides (i, i + 1) of Pn

and (1,m) of Pm are removed. To complete the construction we label the vertices
of new polygon Pn+m−1(i) from the vertex 1 of Pn anticlockwise. In this process,
we say that the vertices i of Pn and 1 of Pm form a vertex of Pn+m−1(i) and that
the vertices i+ 1 of Pn and m of Pm form a side of Pn+m−1(i).

Let D̃ ∈ Dn and D̂ ∈ Dm, then for i ∈ [n], we define partial composition maps

(2.10) D̃ ◦i D̂ = D,

where D is the dissection of Pn+m−1(i) (the polygon introduced previously) defined

of the following manner: it is formed with the diagonals of the dissection D̃ for
the n-gon Pn, the diagonals of D̂ for the m-gon Pm, the side (i, i + 1) of Pn and
the side (1,m) of Pm. All this is done taking into account the new labeling. The
construction discussed here will be called glue of dissections.

For instance

1

2

3

45

◦2
1

2

3

4

5

6

= 1

2
3

4

5

6

7
8

9

10

.

It is clear that ◦i : Dn ×Dm −→ Dn+m−1 for i ∈ [n].

We will make this construction a little more formal and rigorous. Let D̃ ∈ Dn

be a dissection of a polygon Pn with n vertices. Then, we labeled counterclockwise
the vertices of Pn by the numbers of the set {1, 2, · · · , i, i+m, i+m+1, · · · , i+m+
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n− 1}. Denote by D̃n+m−1 the dissection D̃ with the new labels and D̃n+m−1(i) =

D̃n+m−1 ∪ (i, i +m). It is clear that D̃n+m−1(i) is also a dissection for a polygon

Pn+m−1 with n + m − 1 vertices. On other hand, if D̂ ∈ Dm is a dissection for
a second polygon Pm with m vertices, then we label its vertices through the set
{i, i+1, · · · , i+m−1} also counterclockwise. Similarly, one denotes D̂n+m−1 to be

D̂ with the new labels and D̂n+m−1(i) = D̂n+m−1∪(i, i+m−1). Then, D̂n+m−1(i)

is also a dissection of Pn+m−1. Clearly D̃n+m−1(i)∪ D̂n+m−1(i) ∈ Dn+m−1. Then,
we have

(2.11) D̃ ◦i D̂ = D̃n+m−1(i) ∪ D̂n+m−1(i),

for all D̃ ∈ Dn and any D̂ ∈ Dm where i ∈ [n].

Now, we show that axiom (2.7) does not hold for the product of dissections (2.10)
(that is (2.11)) when j = m. In our example n = 5, m = 4 and k = 3, besides i = 2
and j = 4. Then, for the chosen dissections (in this case, all triangulations) one has

 1

2

3

45

◦2 1

2

3

4


◦5

1

23

=

1

2

3

4

5
6

7

8 ◦5

1

23

=

1
2

3

4

5

6
7

8

9

10

,
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on other hand

1

2

3

45

◦2

 1

2

3

4

◦4

1

23

 =

1

2

3

45

◦2
1

2

3

4
5

6

=

1
2

3

4

5

67
8

9

10

.

It implies that in general (2.7) does not hold for j = m in the case of dissections.
What happens in this case is that, for instance, the vertex 3 of P5 in the first double
composition forms sides with the vertices 4 of P4 and 3 of P3, while in the second
double product the vertex 3 of P5 only forms side with the vertex 3 of P3. This
example works in general for all n,m, k ≥ 3.

However, we have

Theorem 2.10. The collection of all dissections of polygons D has structure of
nonsymmetric BCI-operad with respect to the partial composition maps (2.10).

Proof. Define 1 as the unique element of D1, then obviously the axiom (2.9) holds.
Throughout the proof we keep the convention of identifying the vertex i of any
polygon of n vertices with i+ nl for l = 1, 2, · · · .

In our context, to calculate each side of the axioms (2.7) and (2.8) imply to apply
two times the construction of glue of dissections (recall that during the process of
gluing of dissections, we assume that any polygon involved in the discussion has
a fixed dissection attached). Hence, to prove that the remaining axioms hold, we
must show that in the double products of each equality, the pairs of vertices which
form vertices and the pairs of vertices forming sides are the same in each side of the
equality. In effect, this ensures that the dissections obtained for the final polygons
(with n+m+ k − 2 vertices) coincide for each side of the equalities.

We will do the analysis for each side of the axioms. We begin with the axiom
(2.7). Recall that 1 ≤ i ≤ n and 1 ≤ j ≤ m − 1. Hence, the vertex m of Pm does
not form vertices in the construction of glue of dissections with the vertex 1 of P(k).
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Left side of axiom (2.7)

� pairs of vertices forming vertices: The vertex i of Pn and the vertex 1 of
Pm form the vertex i of Pn+m−1(i). Then, the vertex i+ j − 1 of Pn+m−1(i)
with the vertex 1 of Pk forms the vertex i+ j − 1 of final polygon. Note that
the vertex i+ j − 1 of Pn+m−1(i) coincides with the vertex j of Pm.

� pairs of vertices which form sides: The vertex i+1 of Pn and the vertex
m of Pm form a side of Pn+m−1(i). Then, the vertex i+ j of Pn+m−1(i) and
the vertex k of Pk form other side. Observe that the vertex i+j of Pn+m−1(i)
coincides with the vertex j + 1 of Pm.

Right side of axiom (2.7)

� pairs of vertices forming vertices: The vertex j of Pm and the vertex
1 of Pk form the vertex j of Pm+k−1(j). Then, the vertex i of Pn and the
vertex 1 of Pm+k−1(j) form the vertex i of final polygon. In this case, the
vertex j of Pm+k−1(j) becomes the vertex i+ j − 1 for the final polygon.

� pairs of vertices which form sides: The vertices j + 1 of Pm and k of
Pm form a side. Then, the vertex i + 1 of Pn with the vertex m + k − 1 of
Pm+k−1(j) which coincides with the vertex m of Pm forms a side.

Thus, the axiom (2.7) holds. Now, in order to prove the axiom (2.8) observe
that i+m− 1 < j +m− 1. This is because i < j, where i, j ∈ [n] (the case n = 2
for which i = 1 and j = 2 is not excluded). We divide the proof into two cases. Let
us assume first that j = i+ 1 then

Left side of axiom (2.8) for j = i+ 1,

� pairs of vertices forming vertices: The vertex i of Pn with the vertex 1
of Pm form the vertex i of Pn+m−1(i). Observe now that the vertex i+ 1 of
Pn becomes the vertex i+m of Pn+m−1(i). Then the vertex i+1 of Pn forms
vertex with the vertex 1 of Pk.

� pairs of vertices which form sides: The vertices i+1 of Pn and m of Pm

form a side. Then, the vertex i+ 2 of Pn and the vertex k of Pk form other
side.

Right side of axiom (2.8) for j = i+ 1,

� pairs of vertices forming vertices: The vertex i + 1 of Pn forms vertex
with the vertex 1 of Pk. Then, the vertex i of Pn+k−1(i+ 1) which coincides
with the vertex i of Pn forms vertex with the vertex 1 of Pm in order to form
the vertex i of final polygon.
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� pairs of vertices which form sides: The vertex i+2 of Pn and the vertex
k of Pk form a side of Pn+k−1(i+ 1). Then the vertex i+ 1 of Pn+k−1(i+ 1)
that is equal to the vertex i+ 1 of Pn forms a side with the vertex m of Pm.

Suppose now that i+ 1 < j. We analyze this case

Left side of axiom (2.8) for i+ 1 < j,

� pairs of vertices forming vertices: The vertex i of Pn with the vertex 1
of Pm form the vertex i of Pn+m−1(i). Then observe that the vertex j of Pn

becomes the vertex j +m− 1 of Pn+m−1(i). Then the vertex j of Pn forms
vertex with the vertex 1 of Pk.

� pairs of vertices which form sides: The vertices i+1 of Pn and m of Pm

form a side. Then, the vertex j + 1 of Pn and the vertex k of Pk form other
side.

Right side of axiom (2.8) for i+ 1 < j,

� pairs of vertices forming vertices: The vertex j of Pn forms vertex with
the vertex 1 of Pk. Now, the vertex i of Pn+k−1(j) which coincides with the
vertex i of Pn forms vertex with the vertex 1 of Pm in order to form the
vertex i of final polygon.

� pairs of vertices which form sides: The vertex j+1 of Pn and the vertex
k of Pk form a side of Pn+k−1(j). Then the vertex i+ 1 of Pn+k−1(j) which
is equal to the vertex i+ 1 of Pn forms a side with the vertex m of Pm.

This shows that axiom (2.8) holds. The theorem is proved.

Let D be a dissection belonging to Dn, then the number of paths from vertex
i− 1 to vertex i+ 1 is the number of pieces incident on the vertex i for all i ∈ [n].
This fact leads to the following definition

Definition 2.11. Let D ∈ Dn be a dissection and MD its BCI-matrix. If 5 ≤ n,
the vector

qD = (m2n,m13,m24,m35, · · · ,m(n−3)(n−1),m(n−2)n,m1(n−1)) = (q1, q2, · · · , qn−1, qn),

is called the quiddity sequence for the dissection D. Note that quiddity sequence
is formed with some entries of the BCI-matrix MD. Really, these entries are in
some off-diagonals, specifically the off-diagonals are the third and the penultimate
above the principal diagonal.

We have

Lemma 2.12. Consider D1,D2 ∈ Dn. If D1 ̸= D2 then MD1 ̸= MD2 .



A Study of Broline-Crowe-Isaacs Matrices of Polygon Dissections 305

Proof. In fact, suppose that D1 ̸= D2 then there exists a vertex i ∈ [n] for
which the number of pieces incident on i with respect to D1 and D2 is different.
Thus, m(i−1)(i+1)(D

1) ̸= m(i−1)(i+1)(D
2) where m(i−1)(i+1)(D

i) denotes the entry
m(i−1)(i+1) for the matrix Di. Since the quiddity sequences are different for D1 and
D2, this implies the lemma.

Corollary 2.13. There is a one to one correspondence between the sets Dn and
MD(N)n and hence there is a one to one correspondence between the classes D and
MD.

Taking advantage of the mentioned one to one correspondence between D
and MD, we can introduce a structure of Set operad in the collection MD =⊔

n≥1 MD(N)n of all BCI-matrices. Let M
D̃

and M
D̂

be two arbitrary BCI-matrices

such that M
D̃

∈ MD(N)n and MD̂ ∈ MD(N)m, where D̃ and D̂ are dissections of
Pn and Pm respectively. Then, we can define for i ∈ [n]

(2.12) M
D̃
◦i MD̂

= M
D̃◦iD̂

= M
D̃n+m−1(i)∪D̂n+m−1(i)

,

where D̃n+m−1(i) ∪ D̂n+m−1(i) reflects the process of glue of dissections.
A parking function of length m is a sequence of positive integers (a1, · · · , am)

such that its non-decreasing rearrangement (b1, · · · , bm) satisfies bi ≤ i for all i =
1, · · · ,m. We have

Theorem 2.14. Consider n ≥ 3 arbitrary and let D ∈ Dn be any dissection for an
n-gon. Then its quiddity sequence

qD = (m2n,m13,m24,m35, · · · ,m(n−3)(n−1),m(n−2)n,m1(n−1)) = (q1, q2, · · · , qn−1, qn),

is a parkin function of length n.

Proof. We prove this result by induction on n. Next, we show the sets R3,R4,R5

of non-decreasing rearrangements for the quiddity sequences corresponding to dis-
sections of n-gons in the cases n = 3, 4, 5. They are

R3 = {(1, 1, 1)}, R4 = {(1, 1, 1, 1), (1, 1, 2, 2)}
R5 = {(1, 1, 1, 1, 1), (1, 1, 1, 2, 2), (1, 1, 2, 2, 3)},

it is clear that the sequences belong to these sets satisfy the property bi ≤ i. Let
us assume that the result holds for k = n, that is, any quiddity sequence qD is a
parking function for all D ∈ Dn. Observe now that all dissection D ∈ Dn+1 can be

obtained from one D̃ belongs to Dn by adding a vertex in two different forms, 1)
gluing a triangle to one of the sides or 2) placing a new vertex on one of the sides.

Next, we divide the proof in two parts, one for each procedure. Observe first
that in both forms of construction, the quiddity sequence qD can be calculate by
means of the quiddity sequence q

D̃
.
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If the variant 2) was done in order to obtain D and being (b1, · · · , bn) the non-
decreasing rearrangement for q

D̃
(so from our hypotheses it follows that bi ≤ i for

all i), then (1, b1, · · · , bn) is the non-decreasing rearrangement corresponding to qD.
Because qD is obtained from q

D̃
by inserting a 1 in the last vector. It implies that

qD is a parking function.

On the other case, suppose that the construction 1) was carried out and that the
triangle was inserted in the side corresponding to the consecutive vertices i and i+1.
Assume also that the components qi and qi+1 of q

D̃
transform in the components

bk and bl of its non-decreasing rearrangement (b1, · · · , bn) where bk ≤ bl (the proof
for bl ≤ bk is the same), then the non-decreasing rearrangement corresponding to
qD is (1, b1, · · · , bk−1, bk+1, bk+1, · · · , bl−1, bl+1, bl+1, · · · , bn). It shows again that
qD is a parking function.

The proof is concluded.

3. Study of the BCI-matrices through outer Chains of Vertices of Dis-
sections

In this section, we discussed the usefulness of the concept of outer chain of
vertices (these chains of vertices correspond to empty sub-polygons located at the
border of a given polygon) in the form and construction of the BCI-matrices.

As it was mentioned, for practical purposes in every n-gon we identify the vertex
i with i+ kn for k = 1, 2, · · · .

Definition 3.15. Let D be a dissection such that D ̸= Dn
∅ for all n ∈ N and

s ≤ t. We say that a subset of consecutive vertices s, s + 1, . . . , t form an outer
chain of vertices for D if (s− 1, t+1) is a diagonal of D and none of the vertices
s, s + 1, . . . , t is an end of a diagonal of this dissection. We indicate this fact with
the following notation < s, . . . , t >D. The number l<s,...,t>D

= t − s + 1 is called
the length of < s, . . . , t >D. In this case the (t − s + 3)-gon constructed with the
vertices s − 1, s, . . . , t, t + 1 is an empty sub-polygon of D. For convenience this
polygon (a piece of D) will be denoted by Q(s−1,t+1)⟲.

For a dissection fixed, outer chains of vertices always exist when it is not the
empty dissection.
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Example 3.16. In the following dissection for the labeled 6-gon

(3.1)

1

2

3

4

5

6

,

the vertices 4 and 6 give rise to outer chains of length one while the vertex 2 does
not constitute an outer chain.

It is obvious that if D is a dissection of a polygon and all outer chains of vertices
have the same length this does not guarantee that D is a d-angulation for some d
given. A simple example of this fact is the dissection for the 7-gon (1.7) where each
outer chain has length 1, however the dissection is not a triangulation. Now, if D
is a d-angulation of a polygon all outer chain must have length equal to d− 2.

The following simple observation may be very useful in what follows.

Remark 3.17. Let < s, . . . , t >D be an outer chain of a dissection D for a polygon
P or order n. If we remove the vertices s, s+1, . . . , t of P one obtains a new polygon
QP\<s,...,t>D

of order n − (t − s + 1). The dissection D of P leads to a dissection
D(QP\<s,...,t>D

) of QP\<s,...,t>D
that is composed of all diagonals of D except the

diagonal (s− 1, t+ 1) which is a border side for the new polygon.

Here an important comment to be considered for what follows is imposed. The
vertices of the polygon QP\<s,...,t>D

must be relabeled starting from the lesser of
the vertices that was not canceled. To make explicit the comment, consider the
following two dissections for the 6-gon

1

2

3

4

5

6

1
2

3

4
5

6

,

for which the vertices 1, 2 represent an outer chain. Then, after removing these
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vertices, we obtain the two basic triangulations of a rectangle

1

2

3

4

1

2

3

4

.

We have

Proposition 3.18. Let < s, . . . , t >D be an outer chain of a dissection D for
a Polygon. Suppose that the vertex i is not in {s, s + 1 . . . , t}, then under this
assumption, the entries mis,mi(s+1), · · · ,mit of the BCI-matrix MD are all equal.
Hence, since MD is a symmetric matrix also the entries msi,m(s+1)i, · · · ,mti are
equal. On other hand, the entries mik for k = s, s+1, . . . , t can be calculated through
the following formula

(3.2) mik = mi(s−1) +mi(t+1).

Proof. If the length of the outer chain is 1 the first statement is obvious. Suppose
now that 2 ≤ l<s,...,t>D

. For every k such that s < k ≤ t, all the walks of i to k
arise in the following form: let Qi+1,Qi+2, . . . ,Qs−1 be a walk of i to s, then

Qi+1,Qi+2, . . . ,Qs−1,Q(s−1,t+1)⟲, · · · ,Q(s−1,t+1)⟲︸ ︷︷ ︸
(k−s+1) times

,

is a walk of i to k. Note that the possibility Qs−1 = Q(s−1,t+1)⟲ is not excluded. In
fact, it will be the case due to k− s+1 ≤ t− s+1. Thus, the first statement holds.

Since mis = · · · = mit, to prove (3.2) we pay attention in mis (we could have
fixed any other entry mik for s ≤ k ≤ t, because the reasoning is the same). The
walks wi−→s from i to s arise in the two following ways

1. To any walk wi−→(s−1) of i to s− 1, we add the polygon Q(s−1,t+1)⟲, that is,
wi−→s = wi−→(s−1),Q(s−1,t+1)⟲,

2. To every walk wi−→(t+1) of i to t+1, we remove the last terms corresponding
to the sequence

Q(s−1,t+1)⟲, · · · ,Q(s−1,t+1)⟲︸ ︷︷ ︸
(t−s+1) times

,

in other words

wi−→s = wi−→(t+1)\ Q(s−1,t+1)⟲, · · · ,Q(s−1,t+1)⟲︸ ︷︷ ︸
the (t−s+1) last terms of wi−→(t+1)

.
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This shows (3.2). Thus, the proposition is proved.

Also, we have the following:

Proposition 3.19. Let P be a polygon with n vertices and D a dissection of P.
Suppose that < s, . . . , t >D is an outer chain of vertices for D. Consider i, j such
that to go from vertex i to the vertex j in the counterclockwise sense the order of
appearance is i −→ s −→ t −→ j. Then, to calculate mij directly (without using
the argument of symmetry of the BCI-matrix associated to a dissection D) we can
ignore the vertices {s, s+1 . . . , t}, in other words these vertices are invisible for this
counting. Even more, and this is the main statement of proposition

(3.3) mij(MD) = mî ĵ(MD(QP\<s,...,t>D
)),

where î and ĵ are the new label of the vertices i and j for the polygon QP\<s,...,t>D
.

Proof. All walks wi−→j of i to j arise in the following form

wi−→j = wi−→s,Q(s−1,t+1)⟲, · · · ,Q(s−1,t+1)⟲︸ ︷︷ ︸
(t−s+1) times

, wt−→j ,

for wi−→s and wt−→j conveniently chosen, meaning that they are selected in such
a way that the second axiom for walks is satisfied. On the other hand

wî−→ĵ(QP\<s,...,t>D
,D(QP\<s,...,t>D

)) = w
î−→(̂t+1)

, w
(̂s−1)−→ĵ

,

where wi−→s = w
î−→(̂t+1)

, wt−→j = w
(̂s−1)−→ĵ

and w
î−→(̂t+1)

, w
(̂s−1)−→ĵ

is a walk

of î to ĵ in the polygon QP\<s,...,t>D
with respect to the dissection D(QP\<s,...,t>D

).

Moreover, in this manner one recovers every walk of î to ĵ.

Proposition 3.20. Let < s, . . . , t >D be an outer chain of vertices of a dissection
D for a polygon. Then the BCI-matrix MD associated to D has one of the following
two forms:

A) The outer chain satisfies that s < s+ 1 < · · · < t− 1 < t in which case

(3.4) MD =

 (A) (X) (B)

(Xt) (D
(t−s+1)
∅ ) (Y)

(C) (Yt) (D)

 ,

where A is a matrix of order s− 1, X has order (s− 1)× (t− s+ 1), B is of order
(s−1)×(n−t+1). Finally, the matrices C, Y and D have order (n−t+1)×(s−1),
(n − t + 1) × (t − s + 1) and (n − t + 1) × (n − t + 1) respectively. The columns
of the matrix X are all equal. Also, the rows of Y are all equal. Note that in (3.4),
necessarily At = A, C = Bt and Dt = D.
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On other hand, the matrices A,B,C and D are such that

(3.5) MD(QP\<s,...,t>D
) =

(
(A) (B)
(C) (D)

)
.

B) The outer chain is of the form s, s+ 1, . . . , n, 1, 2, . . . , t− 1, t, then we have

(3.6) MD =

 (A) (X) (B)
(Xt) (MD(QP\<s,...,t>D

)) (Y)

(C) (Yt) (D)

 ,

where At = A, Dt = D and C = Bt. The rows of X and Yt are all equal. If m is
the number the vertices of the outer chain < s, s+1, . . . , n, 1, 2, . . . , t− 1, t >D then

(3.7) MDn−m
∅

=

(
(A) (B)
(C) (D)

)
.

Proof. Except for the presence of the matrix D
(t−s+1)
∅ in (3.4), the form A) follows

from remark 3.17 and propositions 3.18 and 3.19. Now, since < s, . . . , t >D is an
outer chain of vertices, then if i, j ∈ {s, . . . , t} and i ̸= j it follows that mij =
mji = 1 and if i = j we have mii = 0. This justifies the occurrence of the matrix

D
(t−s+1)
∅ in MD. Using the same arguments we can to prove B), the difference

consists in that the locations of the empty matrix and MD(QP\<s,...,t>D
) in MD are

exchanged.

Next, we will illustrate (3.4) with examples corresponding to different dissections
of a polygon with 6 vertices.

1) For the dissection D6
[(1,4),(4,6)] the vertices 2, 3 form an outer chain and we

have

(3.8) MD6
[(1,4),(4,6)]

=


0 1 1 1 2 1
1 0 1 1 3 2
1 1 0 1 3 2
1 1 1 0 1 1
2 3 3 1 0 1
1 2 2 1 1 0

 ,

hence,

(3.9) A = (0), B =
(
1 2 1

)
, C =

1
2
1

 , D =

0 1 1
1 0 1
1 1 0

 ,

and

(3.10) X =
(
1 1

)
, Y =

(
1 3 2
1 3 2

)
.
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Also, observe that

(3.11) M
D6

[(1,4)(4,6)]

(
QP\<2,3>

D6
[(1,4)(4,6)]

) =


0 1 2 1
1 0 1 1
2 1 0 1
1 1 1 0

 = MD4
[(2,4)]

.

2) In the dissection D6
[(4,6)] the vertices 1, 2, 3 constitute an outer chain and one

can see that

(3.12) MD6
[(4,6)]

=


0 1 1 1 2 1
1 0 1 1 2 1
1 1 0 1 2 1
1 1 1 0 1 1
2 2 2 1 0 1
1 1 1 1 1 0

 ,

in this case, we only have Y, Yt and D:

(3.13) Y =

1 2 1
1 2 1
1 2 1

 , D =

0 1 1
1 0 1
1 1 0

 ,

and

(3.14) M
D6

[(4,6)]

(
QP\<1,2,3>

D6
[(4,6)]

) =

0 1 1
1 0 1
1 1 0

 = MD3
∅
.

3) Consider now the dissection D6
[(1,3)]. Then, ⟨4, 5, 6⟩ is an outer chain and we

have

(3.15) MD6
[(1,3)]

=


0 1 1 1 1 1
1 0 1 2 2 2
1 1 0 1 1 1
1 2 1 0 1 1
1 2 1 1 0 1
1 2 1 1 1 0

 .

Hence,

(3.16) A =

0 1 1
1 0 1
1 1 0

 , X =

1 1 1
2 2 2
1 1 1

 ,

moreover

(3.17) M
D6

[(1,3)]

(
QP\<4,5,6>

D6
[(1,3)]

) =

0 1 1
1 0 1
1 1 0

 = MD3
∅
.
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We now give an example of case B) in the previous proposition. For the dis-
section D9

[(4,7),(5,7)] for which ⟨8, 9, 1, 2, 3⟩ is an outer chain, we calculate its corre-
sponding BCI-matrix

(3.18) MD9
[(4,7),(5,7)]

=



0 1 1 1 2 3 1 1 1
1 0 1 1 2 3 1 1 1
1 1 0 1 2 3 1 1 1
1 1 1 0 1 2 1 1 1
2 2 2 1 0 1 1 2 2
3 3 3 2 1 0 1 3 3
1 1 1 1 1 1 0 1 1
1 1 1 1 2 3 1 0 1
1 1 1 1 2 3 1 1 0


.

In this, we have colored the matrices

A,B,C,D and M
D9

[(4,7),(5,7)]

(
QP\<8,9,1,2,3>

D9
[(4,7),(5,7)]

) = MD4
[(2,4)]

,

and it is clear that with the matrices A,B,C and D we can construct the matrix
MD5

∅
.

4. Algebraic Manipulation of M-matrices

Here, operations of BCI-matrices are defined which insert rows and columns in
a way to keep the symmetry and the BCI-properties. This part of the article is an
algebraic version of what was done in the previous section.

Concretely, we study transformations on elements ofM(N). The k-enlargement
of a matrix M ∈ M(N)n where 1 ≤ k ≤ n + 1 is the matrix ΠkM of order n + 1
defined in the following form: we insert in M one row and one column which be-
come the k-th row and k-th column respectively for ΠkM. First, let us assume that
k ̸= 1 and k ̸= n+1, then we set (ΠkM)kk = 0 and the remainding entries are filled
using the following rule, each entry of the increased row is the sum of the respective
entries of the rows k − 1 and k of the initial matrix M.

If the additional row is the first or the last for ΠkM, then we should sum
the respective elements of the rows 1 and n of M and also put (Π1M)11 = 0 or
(Πn+1M)(n+1)(n+1) = 0. Finally, the same procedure is used to fill the remaining
entries of the new column. The matrix ΠkM constructed is automatically symmet-
ric.

Example 4.21. It is possible to verify that

Π1MD3
∅
= Π3MD3

∅
= MD4

[(2,4)]
, Π2MD3

∅
= Π4MD3

∅
= MD4

[(1,3)]
,

and also
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Π1MD4
∅
= MD5

[(2,5)]
Π2MD4

∅
= MD5

[(1,3)]
Π3MD4

∅
= MD5

[(2,4)]

Π4MD4
∅
= MD5

[(3,5)]
Π5MD4

∅
= MD5

[(1,4)]
Π1MD4

[(1,3)]
= MD5

[(2,4),(2,5)]

Π2MD4
[(1,3)]

= MD5
[(1,3),(1,4)]

Π3MD4
[(1,3)]

= MD5
[(1,4),(2,4)]

Π4MD4
[(1,3)]

= MD5
[(1,3),(3,5)]

Π5MD4
[(1,3)]

= MD5
[(1,3),(1,4)]

Π1MD4
[(2,4)]

= MD5
[(2,5),(3,5)]

Π2MD4
[(2,4)]

= MD5
[(1,3),(3,5)]

Π3MD4
[(2,4)]

= MD5
[(2,4),(2,5)]

Π4MD4
[(2,4)]

= MD5
[(2,5),(3,5)]

Π5MD4
[(2,4)]

= MD5
[(1,4),(2,4)]

.

Proposition 4.22. Let us assume that M ∈ M(N)n, then its k-enlargement ΠkM

belongs to M(N)n+1 for all k = 1, . . . , n+ 1.

Proof. It is clear that by construction ΠkM ≥ 0, with entries taking integer values.
Observe also that for the same reason the entries of the matrix outside of the three
main diagonals are positive. On the other hand, we already know that the matrix
ΠkM must be symmetric.

� Suppose that k ̸= 1 and k ̸= n+ 1. Then,

(ΠkM)1(n+1) = (M)11 + (M)1n = 0 + 1 = 1,

and
(ΠkM)(n+1)1 = (M)n1 + (M)nn = 1 + 0 = 1.

It only remains to see that the form (see (1.1)) of the three main diagonals
is preserved in the new matrix ΠkM. Now, in the matrix M the sub-matrix

built with the entries of the rows and columns k − 1 and k is

(
0 1
1 0

)
and it

becomes in the sub-matrix

0 1 1
1 0 1
1 1 0

 of ΠkM corresponding to their entries

of the rows and columns k − 1, k and k + 1.

� We observe that there are two other cases to analyze (that is, k = 1 and
k = n+ 1) however they can be proved in a similar way.

Remark 4.23. Let us suppose that M = MD where D is a dissection of an n-gon.
Then, ΠmMD for m = 1, . . . , n + 1 is the matrix corresponding to the induced
dissection D̂ for D for the (n + 1)-gon that results from the insertion of an outer
chain of length 1 between the vertices m− 1 and m of the initial n-gon. For Π1MD

the new vertex is labeled by 1 and for Πn+1MD the new vertex will be the vertex
n+ 1 for the polygon obtained. In other cases, the new vertex becomes the vertex
m. Taking into account the new labeling for the initial vertices, let us assume that p
and q are the labels of the old vertices m−1 and m, then we have that D̂ = D∪(p, q)
and ΠmMD = M

D̂
. We can say that in terms of the geometry, this is just gluing

a triangle to the dissection. We could view this also as an example of a glue of
dissections D̃ ◦i D̂ where D̂ is in D2 and i is depending on m.
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The notion of the k-enlargement of an M-matrix can be generalized in the
following form.

Definition 4.24. A sequential enlargement of length d ofM ∈ M(N)n is a new
matrix Π{k,k+1,...,k+d−1}M of order n+ d obtained in the following form: between
the columns k − 1 and k of M we insert d new columns; also, we insert d new
rows between the rows k − 1 and k of this matrix. The intersection of the d new
columns and rows is the matrix MDd

∅
. Π{1,2,...,d}M means that we insert d columns

and rows before the first row and the first column of M. Now, the meaning of
Π{n+1,n+2,...,n+d}M is obvious. Since, one must consider that the first row and the
first column follow to the last row and last column respectively, then the sequential
enlargement Π{n+1,n+2,...,n+k1,1,2,...,k2}, where k1 + k2 = d is not excluded.

To the remainder entries of the new matrix (that is, the entries outside the
intersection) values following the same rule of a k-enlargement simultaneously are
assigned.

It is clear that a k-enlargement is a sequential enlargement of length one. On
other hand, each sequential enlargement of an M-matrix gives a symmetric matrix.

Example 4.25. We give a concrete example of the above definition. For instance

Π{1,2}

0 1 1
1 0 1
1 1 0

 −→


0 1 2 2 2

1 0 2 2 2

2 2 0 1 1
2 2 1 0 1
2 2 1 1 0

 −→


0 1 1 2 1
1 0 1 2 1
1 1 0 1 1
2 2 1 0 1
1 1 1 1 0

 = MD5
[(3,5)]

,

Π{2,3}

0 1 1
1 0 1
1 1 0

 −→


0 2 2 1 1
2 0 1 2 2

2 1 0 2 2

1 2 2 0 1
1 2 2 1 0

 −→


0 1 1 1 1
1 0 1 1 2
1 1 0 1 2
1 1 1 0 1
1 2 2 1 0

 = MD5
[(1,4)]

,

Π{3,4}

0 1 1
1 0 1
1 1 0

 −→


0 1 2 2 1
1 0 2 2 1
2 2 0 1 2

2 2 1 0 2

1 1 2 2 0

 −→


0 1 2 2 1
1 0 1 1 1
2 1 0 1 1
2 1 1 0 1
1 1 1 1 0

 = MD5
[(2,5)]

,

Π{4,5}

0 1 1
1 0 1
1 1 0

 −→


0 1 1 2 2

1 0 1 2 2

1 1 0 2 2

2 2 2 0 1
2 2 2 1 0

 −→


0 1 1 1 1
1 0 1 2 2
1 1 0 1 1
1 2 1 0 1
1 2 1 1 0

 = MD5
[(1,3)]

.

Proposition 4.26. For any M ∈ M(N)n, Π{k,k+1,...,k+d−1}M ∈ M(N)n+d for k =
1, 2, . . . , n, n+ 1 and all d ≥ 0.
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Proof. The proof of this proposition is very similar to the proof of proposition 4.22,
hence it will be omitted.

Remark 4.27. In general, Π{k,k+1,··· ,k+d−1}MD where D ∈ Dn is equivalent to
find the BCI-matrix corresponding to inserting an outer chain of length d between
the vertices k−1 and k of an n-gon dissected byD. The labels of the new (n+d)-gon
are assigned following a procedure similar to that of observation 4.23. We could
view this as an example of a glue of dissections D̃ ◦i D̂ where D̂ is in Dd−1.

Also, we can insert multiple rows and columns in an M-matrix but not consec-
utively. We capture this fact in a definition

Definition 4.28. A non-sequential enlargement of length d of M ∈ M(N)n is
a new matrix Π[k1,k2,...,kd]M of order n+d where 1 ≤ k1 < k2 < . . . < kd ≤ n+d such
that ki+1 < ki+1 for all i. The new matrix is constructed in the following manner:
we insert d new columns and rows in M such that with respect to Π[k1,k2,...,kd]M

they are the k1-th, k2-th,. . . ,kd-th rows and columns; moreover, the intersection
of the row and column ki-th should be considered 0 for all j = 1, . . . , d. To the
remainder entries of the new matrix we assign values following the same rule of a
k-enlargement listed above. Also, we just have to respect the following order to fill
the new entries in the matrix Π[k1,k2,...,kd]M: first we must fill the row and column
k1, then the row and column k2 and so on until to end with the row and column
kd.

Example 4.29. We illustrate the previous definition with two simple examples

Π[1,3]

0 1 1
1 0 1
1 1 0

 −→


0 2 2 2 2

2 0 2 1 1
2 2 0 2 2

2 1 2 0 1
2 1 2 1 0

 −→


0 1 3 2 1
1 0 1 1 1
3 1 0 1 2
2 1 1 0 1
1 1 2 1 0

 = MD5
[(2,4),(2,5)]

,

Π[2,4]

0 1 1
1 0 1
1 1 0

 −→


0 2 1 2 1
2 0 2 2 2

1 2 0 2 1
2 2 2 0 2

1 2 1 2 0

 −→


0 1 1 2 1
1 0 1 3 2
1 1 0 1 1
2 3 1 0 1
1 2 1 1 0

 = MD5
[(1,3),(3,5)]

,

Proposition 4.30. For any M ∈ M(N)n, we have that Π[k1,k2,...,kd]M ∈ M(N)n+d.

Proof. The proof follows of the following equality

(4.1) Π[k1,k2,...,kd]M = Πkd
Πkd−1

· · ·Πk2
Πk1

M.
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Remark 4.31. Taking into account (4.1), we have that Π[k1,k2,...,kd]MD is equiv-
alent to find in an iterated fashion the BCI-matrix of a dissection of an polygon
with (n + d) vertices corresponding to insert iteratively d outer chains of length
1 between the vertices of an n-gon dissected by D. In this case the insertion is
strictly non-consecutive. At each iteration the polygon obtained must be relabeled
following the same rules of the usual k-enlargement.

To show the use of the different types of enlargements introduced before, we
now see that it is possible to recover the set MD(N)6 \ {MDn

∅
} using this type of

operations on BCI-matrices of order 4 and 5. We have

1. For the matrices MD(N)6(1)

Π1MD5
∅
= MD6

[(2,6)]
Π2MD5

∅
= MD6

[(1,3)]
Π3MD5

∅
= MD6

[(2,4)]

Π4MD5
∅
= MD6

[(3,5)]
Π5MD5

∅
= MD6

[(4,6)]
Π6MD5

∅
= MD6

[(1,5)]

Π{3,4}MD4
∅
= MD6

[(2,5)]
Π{4,5}MD4

∅
= MD6

[(3,6)]
Π{5,6}MD4

∅
= MD6

[(1,4)]

.

2. For the matrices MD(N)6(2)

Π{1,2}MD4
[(1,3)]

= MD6
[(3,5),(3,6)]

Π{2,3}MD4
[(1,3)]

= MD6
[(1,4),(1,5)]

Π{3,4}MD4
[(1,3)]

= MD6
[(1,5),(2,5)]

Π{4,5}MD4
[(1,3)]

= MD6
[(1,3),(3,6)]

Π{5,6}MD4
[(1,3)]

= MD6
[(1,3),(1,4)]

Π{1,2}MD4
[(2,4)]

= MD6
[(3,6),(4,6)]

Π{2,3}MD4
[(2,4)]

= MD6
[(1,4),(4,6)]

Π{3,4}MD4
[(2,4)]

= MD6
[(2,5),(2,6)]

Π{4,5}MD4
[(2,4)]

= MD6
[(2,6),(3,6)]

Π{5,6}MD4
[(2,4)]

= MD6
[(1,4),(2,4)]

Π[1,3]MD4
∅
= MD6

[(2,4),(2,6)]
Π[2,4]MD4

∅
= MD6

[(1,3),(3,5)]

Π[3,5]MD4
∅
= MD6

[(2,4),(4,6)]
Π[4,6]MD4

∅
= MD6

[(1,5),(3,5)]

Π[1,4]MD4
∅
= MD6

[(2,6),(3,5)]
Π[1,5]MD4

∅
= MD6

[(2,6),(4,6)]

Π[2,5]MD4
∅
= MD6

[(1,3),(4,6)]
Π[2,6]MD4

∅
= MD6

[(1,3),(1,5)]

Π[3,6]MD4
∅
= MD6

[(1,5),(2,4)]
Π[1,6]MD4

[(1,3)]
= MD6

[(2,4),(2,5))]

Π[1,6]MD4
[(2,4)]

= MD6
[(2,5),(3,5))]

.

3. For the matrices MD(N)6(3)

Π[1,3]MD4
[(1,3)]

= MD6
[(2,4),(2,5),(2,6)]

Π[2,4]MD4
[(1,3)]

= MD6
[(1,3),(1,5),(3,5)]

Π[3,5]MD4
[(1,3)]

= MD6
[(1,4),(2,4),(4,6)]

Π[1,4]MD4
[(1,3)]

= MD6
[(2,5),(2,6),(3,5)]

Π[1,5]MD4
[(1,3)]

= MD6
[(2,4),(2,6),(4,6)]

Π[2,5]MD4
[(1,3)]

= MD6
[(1,3),(1,4),(4,6)]

Π[2,6]MD4
[(1,3)]

= MD6
[(1,3),(1,4),(1,5)]

Π[3,6]MD4
[(1,3)]

= MD6
[(1,4),(1,5),(2,4)]

Π[2,4]MD4
[(2,4)]

= MD6
[(1,3),(3,5),(3,6)]

Π[4,6]MD4
[(2,4)]

= MD6
[(1,5),(2,5),(3,5)]

Π[1,4]MD4
[(2,4)]

= MD6
[(2,6),(3,5),(3,6)]

Π[1,5]MD4
[(2,4)]

= MD6
[(2,6),(3,6),(4,6)]

Π[2,5]MD4
[(2,4)]

= MD6
[(1,3),(3,6),(4,6)]

Π[3,6]MD4
[(2,4)]

= MD6
[(1,5),(2,4),(2,5)]

.



A Study of Broline-Crowe-Isaacs Matrices of Polygon Dissections 317

5. Future Work

In this section we propose some future work. BCI-matrix for infinite frieze:
The notion of infinite frieze of positive integers was defined in [14] and [3]. They

are arrays consisting of infinitely many rows of positive integers, bounded above by
a row of zeros followed by a rows of ones, satisfying the unimodular rule everywhere.
A way to present graphically an infinite frieze F = (mi,j)i,j∈Z,j−i≥−2 is the following

0 0 0 0
1 1 1 1

· · · m−1,−1 m0,0 m1,1 m2,2 · · ·
m−1,0 m0,1 m1,2 m2,3

m−1,1 m0,2 m1,3 m2,4

. . .
. . .

such that, the relation mijmi+1,j+1 −mi+1,jmi,j+1 = 1 holds for j− i ≥ −1.
Note that mi,i−2 = 0, mi,i−1 = 1 for all i ∈ Z and mij > 0 otherwise.

The simplest example might be the following

(4.1)

0 0 0 0 0
1 1 1 1 1

2 2 2 2 2
· · · 3 3 3 3 3 · · ·

4 4 4 4 4
5 5 5 5 5

. . .
. . .

,

which is known as the basic infinite frieze F∗.

As a motivation, we give the definition of one-crossing triangulation.

Definition 4.32. For an one-crossing triangulation of a polygon P with n
vertices, we mean a set of diagonals having only one crossing point of which
it is possible to obtain a triangulation of P by removing one of the diagonals.

In the above definition, the diagonal that is removed to obtain the trian-
gulation has not to be unique. Then at least in the context of one-crossing
triangulations, we can assign a quiddity sequence v = (a1, . . . , an) to every
one-crossing triangulation T(1), where its entries have the same meaning as
in the case of usual triangulations. On other hand, it is clear that an one-
crossing triangulation of a polygon can be considered as a triangulation of a
punctured disc, see [1] and [3], where we take the puncture to be the crossing
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of the diagonals. Now, we adapt the notion of path between vertices for an
one-crossing triangulation of an arbitrary polygon.

Observe before that each sub-polygon of an one-crossing triangulation
is a triangle in the following sense, these triangles are of two types : 1)
triangles whose vertices are also vertices for the polygon, 2) triangles for
which the puncture is a vertex and the other two vertices are also vertices
of the polygon.

Let T(1) be an one-crossing triangulation of an n-gon Pn, and let i and j
vertices of Pn, such that i+1 ≤ j. We identify i+kn with i for all k = 1, 2, · · · .
A sequence Qi+1, . . . ,Qj−1 of triangles of T(1) is called a (counterclockwise)
path from i to j if it satisfies the following properties

1. The triangle Qk is incident to vertex k for all k ∈ {i+1, i+2, . . . , j−1}.

2. In the sequence Qi+1,Qi+2, . . . ,Qj−2,Qj−1, every triangle of T(1) ap-
pears at most once.

For i + 1 ≤ j the number of (counterclockwise) paths from i to j is
denoted mi,j . It is clear that mi,i = 0. Then, following [12] we introduce
the n × n-matrix MT(1) associated to the one-crossing triangulation T(1) as
MT(1) = (mi,j)1≤i.j≤n which will be called from now the Broline-Crowe-Isaacs
(BCI) matrix corresponding to T(1).

This construction is a direct generalization of the one proposed in [6] for
non-crossing triangulations.

Example 4.33. This example is quite illustrative. The infinite frieze (4.1)
follows from the one-crossing triangulation of 4-gon T(1) = {(1, 3), (2, 4)}

(4.2)

1 2

4 3

,

with quiddity sequence v = (2, 2, 2, 2). Each entry represents the number of
triangles incident in the respective vertex. On the other hand, the matrix of
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Broline-Crowe-Isaacs for this example is

(4.3) MT(1) =


0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0

 .

Example 4.34. Consider a 5-gon provided with a 1-crossing triangulation
as in the following figure

(4.4)

1

2

45

3

,

with quiddity sequence v = (3, 2, 2, 3, 1). This gives rise to an infinite frieze.
We present it below together with its Broline-Crowe-Isaacs matrix:

(4.5) Fv =

0 0 0 0 0
1 1 1 1 1

3 2 2 3 1
· · · 5 3 5 2 2 · · ·

7 7 3 3 3
16 4 4 4 4

. . .
. . .

,

and

(4.6) MFv =


0 1 2 3 7
3 0 1 2 5
2 3 0 1 3
1 2 3 0 1
1 3 5 7 0


From (4.5) and (4.6) we see that Fv has two different pyramids in its funda-
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mental domain

F↓
v =

1 1 1 1
3 2 2

5 3
7

, F↑
v =

1
3 1

5 2 2
7 3 3 3

.

We propose the following problems

1. To study the Broline-Crowe-Issacs-matrix for any punctured discs. In
particular, it will be interesting to find a formula for the determinant
of the corresponding BCI-matrix in this context (if it exists). For
instance, for an one-crossing triangulation the following question arises:
Is the determinant of its BCI-matrix related to the number of triangles?

2. To find suitable products between punctured discs that would allow us
the use of operad theory between their BCI-matrices.
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