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Abstract. In 1914, Bohr proved that there is an r0 ∈ (0, 1) such that if a power

series
∑

∞

m=0
cmz

m is convergent in the open unit disc and |
∑

∞

m=0
cmz

m| < 1 then,
∑

∞

m=0
|cmz

m| < 1 for |z| < r0. The largest value of such r0 is called the Bohr radius.

In this article, we find Bohr radius for some univalent harmonic mappings having different

dilatations. We also compute the Bohr radius for functions that are convex in one direc-

tion.

1. Introduction

The Bohr inequality, first introduced in 1914 by Harald Bohr in his seminal
work [3] and subsequently improved independently by M. Riesz, I. Shur and F.
Wiener, essentially states that if f(z) =

∑∞
m=0 amz

m is an analytic function in the
open unit disc D = {z ∈ C : |z| < 1} and |f(z)| < 1 for all z ∈ D, then

(1.1)

∞
∑

m=0

|am|rm ≤ 1

for all z ∈ D with |z| = r ≤ r0 = 1/3 and 1/3 is the largest possible value of
r0, called the Bohr radius. Inequalities of type (1.1) have become famous by the
name Bohr inequalities and the problems of finding the largest possible values of
r0 in different setups are now called Bohr radius problems. For a glimpse of the
ongoing current research in this area we refer the reader to some recent articles, e.g.
[1, 2, 5, 8, 9] and references therein.
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In 2010, Abu Muhanna [8] investigated some Bohr radius problems using the
concept of subordination. For two analytic functions f and g in D, g is said to
be subordinate to f (written, g ≺ f) if there exists a function ψ analytic in D

with ψ(0) = 0 and |ψ(z)| < 1 such that g = f ◦ ψ. In particular, when f is
univalent, then g ≺ f is equivalent to g(0) = f(0) and g(D) ⊂ f(D). We shall
denote by S(f), the class of all functions g subordinate to a fixed function f. A
class of analytic (harmonic) functions in the unit disc D is said to possess classical
Bohr’s phenomenon if an inequalty of the type (1.1) is satisfied in |z| < r0, for
some r0, 0 < r0 ≤ 1. It is known (see [8]) that not all classes of functions have
classical Bohr’s phenomenon. So, Abu Muhanna [8] reformulated classical Bohr’s
phenomenon and proved the following result:

Theorem 1.1. If f(z) =
∑∞

m=0 amz
m is a univalent function and g(z) =

∑∞
m=0 bmz

m ∈ S(f), then

(1.2)
∞
∑

m=1

|bm|rm ≤ d(f(0), ∂f(D))

for all |z| = r ≤ r0 = 3 −
√
8 = 0.17157.., where d(f(0), ∂f(D)) is the Euclidean

distance between f(0) and ∂f(D), the boundary of f(D). The value of r0 is sharp
for f(z) = z/(1 − z)2, the Koebe function. Further, if f is convex univalent in D,
then r0 = 1/3.

In the recent years, a number of research articles (for example see [2, 6, 7]) are
published and many hidden facts of this subject are brought into broad daylight.
In particular, Bhowmik and Das [2] successfully extended the Bohr inequalities
of type (1.2) for certain harmonic functions. A complex valued function f(z) =
u(x, y)+ iv(x, y) of z = x+ iy ∈ D is said to be harmonic if both u(x, y) and v(x, y)
are real harmonic in D. It is known that such an f can be uniquely represented
as f = h + g, where h and g are analytic functions in D with f(0) = h(0). It
immediately follows from this representation that f is locally univalent and sense
preserving whenever its Jacobian Jf , defined by Jf (z) := |h′(z)|2−|g′(z)|2, satisfies
Jf (z) > 0 for all z ∈ D; or equivalently if h′ 6= 0 in D and the (second complex)
dilatation wf of f , defined by wf (z) = g′(z)/h′(z), satisfies the condition |wf (z)| < 1
in D. A harmonic function f = h + g defined in D is said to be K-quasiconformal
if its dilatation wf satisfies |wf | ≤ k, k = (K − 1)/(K + 1) ∈ [0, 1). In view of the
work of Schaubroeck in [10], aforesaid definitions and notations for subordination
of analytic functions can be extended to harmonic functions without any change.
This lead Bhowmik and Das [2] to extend Theorem 1.1. as under:

Theorem 1.2. Let f(z) = h(z) + g(z) =
∑∞

m=0 amz
m +

∑∞
m=1 bmz

m be a sense
preserving K-quasiconformal harmonic mapping defined in D such that h is univa-
lent in D, and let f1(z) = h1(z) + g1(z) =

∑∞
m=0 cmz

m +
∑∞

m=1 dmz
m ∈ S(f).

Then

(1.3)

∞
∑

m=1

|cm|rm +

∞
∑

m=1

|dm|rm ≤ d(h(0), ∂h(D))
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for |z| = r ≤ r0 = (5K + 1 −
√

8K(3K + 1)/(K + 1). This result is sharp for the

function p(z) = z/(1 − z)2 + kz/(1− z)2, where k = (K − 1)/(K + 1). Moreover,
if we take h to be convex univalent then the inequality in (1.3) holds for |z| =
r ≤ r0 = (K + 1)/(5K + 1). This result is again sharp for the function q(z) =
z/(1− z) + kz/(1− z).

In this article, our aim is to establish the Bohr’s phenomenon and compute
Bohr radius for some subclasses of univalent harmonic functions. We also propose
to improvise Theorem 1.1. and 1.2. stated above.

We close this section by setting certain notations for subsequent use in this
paper. We denote by SH , the class of univalent harmonic functions f normalized
by the conditions f(0) = 0 and fz(0) = 1. In addition, if fz(0) = 0 also, then the
class is denoted by S0

H . Further, K
0
H is the usual subclass of S0

H consisting of convex
functions. A domain Ω is said to be convex in the direction θ, 0 ≤ θ < π, if the
intersection of the straight line through the origin and the point eiθ in the complex
plane is connected or empty. A function f mapping the open unit disc D onto such
a domain is called convex in direction θ.

2. Main Results

We begin this section by stating following lemma which immediately follows
from the work of Bhowmik and Das [1].

Lemma 2.1. Let f(z) =
∑∞

m=0 amz
m and g(z) =

∑∞
m=0 bmz

m be two analytic
functions in D and g ≺ f. Then

∞
∑

m=0

|bm|rm ≤
∞
∑

m=0

|am|rm

for |z| = r ≤ 1/3.

Using this lemma, we now improvise Theorem 1.1 by taking univalent analytic
function in D as f(z) = z +

∑∞
m=2 amz

m. Making use of well known De Brange’s
theorem: |am| ≤ m,m = 2, 3, ..., and after some simple calculations, we easily get:

Theorem 2.2. If f(z) = z +
∑∞

m=2 amz
m is a univalent analytic function in D

and g(z) =
∑∞

m=1 bmz
m ∈ S(f), then

(2.1)

∞
∑

m=1

|bm|rm ≤ 1

for all |z| = r ≤ 1/3.

In a similar manner, we restate Theorem 1.2. as under;
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Theorem 2.3. Let f(z) = h(z) + g(z) = z +
∑∞

m=2 amz
m +

∑∞
m=1 bmz

m be a
sense preserving K-quasiconformal harmonic mapping in D, such that h is analytic
univalent in D. Then

(2.2)
∞
∑

m=1

|am|rm +
∞
∑

m=1

|bm|rm ≤ 1, a1 = 1

for |z| = r ≤ r0 = (2K + 1 −
√

K(3K + 2))/(K + 1) and it is sharp for p(z) =

z/(1 − z)2 + kz/(1− z)2. If we take h to be convex univalent then the inequality
in (2.2) holds for |z| = r ≤ r0 = (K + 1)/(3K + 1) and it is sharp for p(z) =
z/(1−z)+kz/(1− z), where k = (K−1)/(K+1). Further, let f1(z) = h1(z)+g1(z) =
∑∞

m=1 cmz
m +

∑∞
m=1 dmz

m ∈ S(f). Then

(2.3)
∞
∑

m=1

|cm|rm +
∞
∑

m=1

|dm|rm ≤ 1

for |z| = r ≤ r0 = min(1/3, (2K + 1 −
√

K(3K + 2))/(K + 1)). If we take h to be
convex univalent then the inequality in (2.3) holds for |z| = r ≤ r0 = min(1/3, (K+
1)/(3K + 1)).

In next theorem, we establish Bohr’s phenomenon for univalent harmonic func-
tions f = h+ g ∈ SH whose dilatation g′/h′ is suitably chosen.

Theorem 2.4. Let f(z) = h(z)+ g(z) = z+
∑∞

m=2 amz
m +

∑∞
m=1 bmz

m be a uni-
valent and K-quasiconformal harmonic mapping in D, where h is analytic univalent
in D and g′(z)/h′(z) = keiθzn, k = (K − 1)/(K + 1) ∈ (0, 1), n ∈ N, θ ∈ R. Then

(2.4)

∞
∑

m=1

|am|rm +

∞
∑

m=1

|bm|rm ≤ 1, a1 = 1

for |z| = r ≤ r0, where r0 is the only root of the equation

(2.5)
(k + 1)r

(1− r)2
− 2nkr

(1− r)
− kn2log(1− r) = 1

in (0, 1) and this r0 is best possible one.

Letting k → 1 (equivalently, K → ∞) we obtain the following result.

Corollary 2.5. Let f(z) = h(z) + g(z) = z +
∑∞

m=2 amz
m +

∑∞
m=1 bmz

m be
a univalent harmonic mapping in D, where h is analytic univalent in D and
g′(z)/h′(z) = eiθzn, n ∈ N, θ ∈ R. Then

(2.6)

∞
∑

m=1

|am|rm +

∞
∑

m=1

|bm|rm ≤ 1, a1 = 1
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Figure 1: φ(r) w.r.t r for n = 3.

for |z| = r ≤ r0, where r0 is the only root in (0, 1) of the equation φ(r) = 0, where

(2.7) φ(r) =
2r

(1− r)2
− 2nr

(1− r)
− n2log(1− r) − 1.

This r0 is the best possible one.

By plotting the graph of φ(r) w.r.t r for different values of n, we observe that
there is only one root of φ(r) in (0, 1) which is the Bohr radius for that value of
n in the dilatation function. Figure 1 illustrates the case when n = 3 and in the
following table we have listed values of r0 computed for n = 1, 2, 3 and 4.

n r0
1 0.3485...
2 0.3121...
3 0.1794...
4 0.0959...

We observe that if n→ ∞, then r0 → 0.
Lemma 2.1 and Theorem 2.4 together lead us to the following result for the subor-
dination class S(f).

Corollary 2.6. Let f1(z) = h1(z) + g1(z) =
∑∞

m=1 cmz
m +

∑∞
m=1 dmz

m ∈ S(f)
where f is as defined in Theorem 2.4. Then

(2.8)

∞
∑

m=1

|cm|rm +

∞
∑

m=1

|dm|rm ≤ 1

for |z| = r ≤ r1 = min(1/3, r0), where r0 is same as obtained in Theorem 2.4.

Next theorem shows the existence of Bohr’s phenomenon for f ∈ SH with
dilatation wf = (a+ z)/(1 + az), a ∈ (−1, 1).
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Theorem 2.7. Let f(z) = h(z) + g(z) = z +
∑∞

m=2 amz
m +

∑∞
m=1 bmz

m be a
univalent harmonic mapping in D, where h is univalent in D and g′(z)/h′(z) =
a+z
1+az , a ∈ (−1, 1) Then

(2.9)

∞
∑

m=1

|am|rm +

∞
∑

m=1

|bm|rm ≤ 1 + |a|, a1 = 1

for |z| = r ≤ r0, where r0 = 0.2291... is a unique root lying in (0, 1) of r3 − 3r2 +
5r − 1 = 0.

Remark 2.8. We observe that if we take g′/h′ = a−z
1−az , a ∈ (−1, 1), in Theorem 2.7,

then we obtain the same value of r0.

In the following theorem we establish Bohr’s phenomenon for univalent har-
monic functions convex in one direction.

Theorem 2.9. Let f(z) = h(z) + g(z) = z +
∑∞

m=2 amz
m +

∑∞
m=1 bmz

m be a
harmonic mapping in D, where h is analytic univalent in D and h(z) + eiθg(z) is
convex univalent in D for some θ ∈ R. Then

(2.10)

∞
∑

m=1

|am|rm +

∞
∑

m=1

|bm|rm ≤ 1, a1 = 1

for |z| = r ≤ r0 = 0.2192....

We can drop the condition of univalency of h in Theorem 2.9 if we take b1 = 0.

Theorem 2.10. Let f(z) = h(z)+ g(z) = z+
∑∞

m=2 amz
m+

∑∞
m=2 bmz

m ∈ S0
H be

a harmonic mapping in D, where h(z) + eiθg(z) is convex univalent in D for some
θ ∈ R. Then

(2.11)

∞
∑

m=1

|am|rm +

∞
∑

m=2

|bm|rm ≤ 1, a1 = 1

for |z| = r ≤ r0 = 0.3134..., where r0 is a unique root in (0, 1) of 4r3−9r2+12r−3 =

0. This result is sharp for Koebe function K(z) = z−1/2z2+1/6z3

(1−z)3 + 1/2z2+1/6z3

(1−z)3 .

Our last theorem gives Bohr radius for convex univalent harmonic functions in
S0
H .

Theorem 2.11. Let f(z) = h(z)+g(z) = z+
∑∞

m=2 amz
m+

∑∞
m=2 bmz

m ∈ K0
H , z ∈

D. Then

(2.12)

∞
∑

m=1

|am|rm +

∞
∑

m=2

|bm|rm ≤ 1, a1 = 1

for |z| = r ≤ r0 = (3 −
√
5)/2 = 0.3819.... This value of r0 is sharp for L(z) =

1
2

[

z
1−z + z

(1−z)2 + z
1−z − z

(1−z)2

]

.
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3. Proof of Theorems

We begin this section by stating a lemma which is easy to prove.

Lemma 3.1. Let h(z) =
∑∞

m=0 amz
m and g(z) =

∑∞
m=0 bmz

m be two holomorphic
functions in D such that h(z) = g(z). Then

(3.1)

∞
∑

m=0

|am|rm =

∞
∑

m=0

|bm|rm

for all |z| = r < 1.

Proof of Theorem 2.4. From g′(z) = keiθznh′(z), we get

∞
∑

m=1

mbmz
m−1 = keiθ

∞
∑

m=1

mamz
n+m−1, z ∈ D,

where a1 = 1 and on integrating we obtain

∞
∑

m=1

bmz
m = keiθ

∞
∑

m=1

m

m+ n
amz

m+n, z ∈ D.

Now, applying Lemma 3.1, we get

(3.2)

∞
∑

m=1

|bm|rm = k

∞
∑

m=1

m

m+ n
|am|rm+n

for all |z| = r < 1. Since h is analytic univalent in D and according to De Brange’s
theorem, |am| ≤ m,m = 2, 3, ..., therefore, from (3.2), we have

∞
∑

m=1

|am|rm +

∞
∑

m=1

|bm|rm =

∞
∑

m=1

|am|rm + k

∞
∑

m=1

m

m+ n
|am|rm+n

≤
∞
∑

m=1

mrm + k

∞
∑

m=1

m2

m+ n
rm+n

=

∞
∑

m=1

mrm + k

∞
∑

m=n+1

(m− n)2

m
rm

≤
∞
∑

m=1

mrm + k

∞
∑

m=1

(m− n)2

m
rm

= (k + 1)

∞
∑

m=1

mrm + kn2
∞
∑

m=1

1

m
rm − 2kn

∞
∑

m=1

rm

=
(k + 1)r

(1 − r)2
− kn2 log(1− r)− 2knr

1− r
.
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Figure 2: Image of |z| < 0.3485 under f0(z).

Thus
∑∞

m=1 |am|rm +
∑∞

m=1 |bm|rm ≤ 1 if

(3.3)
(k + 1)r

(1 − r)2
− kn2 log(1− r) − 2knr

1− r
≤ 1.

Now, we need to verify that inequality (3.3) holds for r ≤ r0, where r0 is the unique
root of the equation (2.5) lying in (0,1). For this let

φ(r) =
(k + 1)r

(1 − r)2
− kn2 log(1− r) − 2knr

1− r
− 1.

Then φ(r) is continuous in (0, 1), φ(0) = −1 < 0 and limr→1−φ(r) > 0 implies that
there is atleast one root of φ(r) = 0 in (0, 1). But φ′(r) > 0 for all r ∈ (0, 1), k ∈ (0, 1)
and for all n ∈ N shows that φ is strictly increasing in (0, 1). Hence φ(r) = 0 has a
unique root r0 in (0, 1).

To see that this r0 is best possible one, we consider f0(z) = z/(1 − z)2 +
z/(1− z)2 − 2z/(1− z)− log(1− z). f0 maps |z| < 0.3485... onto the region given
in the Figure 2 from which it is evident that r0 is sharp and can not be improved
further.

Proof of Theorem 2.7. From g′(z) =
(

a+z
1+az

)

h′(z) we obtain

(3.4)

∞
∑

m=1

mbmz
m−1 =

(

a+ z

1 + az

) ∞
∑

m=1

mamz
m−1, z ∈ D
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where a1 = 1 and this gives

∞
∑

m=1

mbmz
m−1 +

∞
∑

m=1

mabmz
m =

∞
∑

m=1

maamz
m−1 +

∞
∑

m=1

mamz
m, z ∈ D.

Thus we have

∞
∑

m=1

m|bm||z|m−1 −
∞
∑

m=1

m|a||bm||z|m ≤
∞
∑

m=1

m|a||am||z|m−1 +
∞
∑

m=1

m|am||z|m.

On integrating from 0 to r, we get

∞
∑

m=1

|bm|rm −
∞
∑

m=1

m

m+ 1
|a||bm|rm+1 ≤

∞
∑

m=1

|a||am|rm +

∞
∑

m=1

m

m+ 1
|am|rm+1,

and this implies

(3.5)

∞
∑

m=1

(

|bm| − (
m− 1

m
)|a||bm−1|

)

rm ≤
∞
∑

m=1

(

|a||am|+ (
m− 1

m
)|am−1|

)

rm.

Now, we have

∞
∑

m=1

(|am|+ |bm|)rm =

∞
∑

m=1

(|am|+ |bm|)rm −
∞
∑

m=1

(

m− 1

m

)

|a||bm−1|rm−1

+

∞
∑

m=1

(

m− 1

m

)

|a||bm−1|rm−1

≤
∞
∑

m=1

(|am|+ |bm|)rm −
∞
∑

m=1

(

m− 1

m

)

|a||bm−1|rm

+

∞
∑

m=1

(

m− 1

m

)

|a||bm−1|rm−1

=

∞
∑

m=1

|am|rm +

∞
∑

m=1

(

|bm| −
(

m− 1

m

)

|a||bm−1|
)

rm

+

∞
∑

m=1

(

m− 1

m

)

|a||bm−1|rm−1.
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From (3.5), we get

∞
∑

m=1

(|am|+ |bm|)rm ≤
∞
∑

m=1

|am|rm +
∞
∑

m=1

(

|a||am|+
(

m− 1

m

)

|am−1|
)

rm

+

∞
∑

m=1

(

m− 1

m

)

|a||bm−1|rm−1

≤
∞
∑

m=1

(1 + |a|)|am|rm +

∞
∑

m=1

(

m− 1

m

)

|am−1|rm−1

+

∞
∑

m=1

(

m− 1

m

)

|bm−1|rm−1

=

∞
∑

m=1

(1 + |a|)|am|rm +

∞
∑

m=1

(

m

m+ 1

)

(|am|+ |bm|) |rm.

Therefore, we get

∞
∑

m=1

(

1

m+ 1

)

(|am|+ |bm|)rm ≤ (1 + |a|)
∞
∑

m=1

|am|rm.

Multiplying both sides with r and then differentiating w.r.t r, we get

(3.6)

∞
∑

m=1

(|am|+ |bm|)rm ≤ (1 + |a|)
∞
∑

m=1

(m+ 1)|am|rm.

As h is univalent, so |am| ≤ m by De Branges’s Theorem. From (3.6), we have

∞
∑

m=1

(|am|+ |bm|)rm ≤ (1 + |a|)
∞
∑

m=1

(m+ 1)mrm

= (1 + |a|)
(

r(1 + r)

(1 − r)3
+

r

(1− r)2

)

≤ (1 + |a|)

for r3 − 3r2 + 5r − 1 ≤ 0 and this happens for r ≤ 0.2291....

Proof of Theorem 2.9. Let h(z) + eiθg(z) = ψ(z), where ψ(z) =
∑∞

m=1 Cmz
m is

a convex univalent function. So, we have |am + eiθbm| = |Cm| ≤ 1 for all m ∈ N.
This implies |bm| ≤ 1 + |am|,m ∈ N. We have with |a1| = 1,

∞
∑

m=1

|am|rm +

∞
∑

m=1

|bm|rm ≤
∞
∑

m=1

|am|rm +

∞
∑

m=1

(1 + |am|)rm

= 2

∞
∑

m=1

|am|rm +

∞
∑

m=1

rm.
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Since h is univalent in D, so by De Brange’s Theorem, we have |am| ≤ m and hence
we get

(3.7)

∞
∑

m=1

|am|rm +

∞
∑

m=1

|bm|rm ≤ 1

for 2r
(1−r)2 + r

1−r ≤ 1 i.e. for 2r2 − 5r + 1 ≥ 0. This is true for r ≤ r0 = 5−
√
17

4 =
0.2192....

Now to prove Theorem 2.10., we first state the following result of Sheil-Small
[11].

Lemma 3.2. If f(z) = h(z) + g(z) = z +
∑∞

m=2 amz
m +

∑∞
m=2 bmz

m ∈ S0
H is

convex in one direction, then

|am| ≤ (m+ 1)(2m+ 1)

6
|bm| ≤ (m− 1)(2m− 1)

6
.

Proof of Theorem 2.10. h+eiθg is convex univalent implies that f is convex in the
direction −θ/2, by the well known result of Clunie and Sheil-Small [4]. Therefore,
from Lemma 3.2, we have

|am| ≤ (m+ 1)(2m+ 1)

6
|bm| ≤ (m− 1)(2m− 1)

6

and so,

∞
∑

m=1

|am|rm +

∞
∑

m=2

|bm|rm ≤
∞
∑

m=1

(m+ 1)(2m+ 1)

6
rm +

∞
∑

m=2

(m− 1)(2m− 1)

6
rm

=
∞
∑

m=1

2m2 + 1

3
rm

=
2r(r + 1)

3(1− r)3
+

r

3(1− r)

≤ 1

if 4r3 − 9r2 + 12r − 3 ≤ 0. This inequality holds for r ≤ r0 = 0.3134..., where
r0 is unique root of 4r3 − 9r2 + 12r − 3 = 0 in (0, 1). This result is sharp for

K(z) = z−1/2z2+1/6z3

(1−z)3 + 1/2z2+1/6z3

(1−z)3 , where K is harmonic mapping in D, which

maps |z| < 0.3134 onto region given in Figure . It is clear from Figure that
|K(z)| < 1 for |z| < 0.3134... and 0.3134... can not be improved. Hence this r0 is
sharp for inequality (2.11) also.

To prove Theorem 2.11., we need following result of Clunie and Sheil-Small [4].
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Figure 3: Image of |z| < 0.3134 under K(z).

Lemma 3.3. If a harmonic function

f(z) = h(z) + g(z) = z +
∞
∑

m=2

amz
m +

∞
∑

m=2

bmzm ∈ K0
H , z ∈ D,

then

|am| ≤ m+ 1

2
|bm| ≤ m− 1

2
.

Proof of Theorem 2.11. In view of Lemma 3.3., f(z) ∈ K0
H implies that

|am| ≤ m+ 1

2
|bm| ≤ m− 1

2
.

This gives for a1 = 1,

∞
∑

m=1

|am|rm +

∞
∑

m=2

|bm|rm ≤
∞
∑

m=1

m+ 1

2
rm +

∞
∑

m=2

m− 1

2
rm

=
∞
∑

m=1

mrm

=
r

(1 − r)2

≤ 1.
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for r ≤ r0 = 0.3819... This value of r0 is best possible, as the result is sharp for

L(z) = 1
2

[

z
1−z + z

(1−z)2 + z
1−z − z

(1−z)2

]

. For L(z) we have

∞
∑

m=1

|am|rm +
∞
∑

m=2

|bm|rm =
∞
∑

m=1

∣

∣

∣

∣

m+ 1

2

∣

∣

∣

∣

rm +
∞
∑

m=2

∣

∣

∣

∣

1−m

2

∣

∣

∣

∣

rm

=

∞
∑

m=1

mrm

=
r

(1− r)2

≤ 1

for r ≤ 0.3819... Thus r0 is sharp.
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