DOI QR코드

DOI QR Code

A Numerical Study on Ventilation Characteristics of Factors Affecting Leakages in Hydrogen Ventilation

누출 수소 환기에 영향을 미치는 요인별 환기 특성에 관한 수치해석적 연구

  • Lee, Chang-Yong (Division of Marine Engineering, Incheon National Maritime High School) ;
  • Cho, Dae-Hwan (Division of Marine Engineering, Mokpo National Maritime University)
  • 이창용 (국립인천해사고등학교) ;
  • 조대환 (목포해양대학교 기관시스템공학과)
  • Received : 2022.04.06
  • Accepted : 2022.06.27
  • Published : 2022.06.30

Abstract

Hydrogen is emerging as an alternative fuel for eco-friendly ships because it reacts with oxygen to produce electrical energy and only water as a by-product. However, unlike regular fossil fuels, hydrogen has a material with a high risk of explosion due to its low ignition point and high flammability range. In order to safely use hydrogen in ships, it is an essential task to study the flow characteristics of hydrogen leakage and diffusion need to be studied. In this study, a numerical analysis was performed on the effect of leakage, ventilation, etc. on ventilation performance when hydrogen leaks in an enclosed space such as inside a ship. ANSYS CFX ver 18.1, a commercial CFD software, was used for numerical analysis. The leakage rate was changed to 1 q, 2 q, and 3 q at 1 q = 1 g/s, the ventilation rate was changed to 1 Q, 2 Q and 3 Q at 1 Q = 0.91 m/s, and the ventilation method was changed to type I, type II, type III to analyze the ventilation performance was analyzed. As the amount of leakage increased from 1 q to 3 q, the HMF in the storage room was about 2.4 to 3.0 times higher. Furthermore, the amount of ventilation to reduce the risk of explosion should be at least 2 Q, and it was established that type III was the most suitable method for the formation of negative pressure inside the hydrogen tank storage room.

수소는 산소와 반응하여 전기에너지를 만들고 부산물로 물을 생성하므로 친환경 선박의 대체 연료로 대두되고 있다. 그러나 수소는 일반 화석연료와는 달리 낮은 점화 에너지와 높은 가연성 범위로 인하여 폭발의 위험성이 높은 물질이다. 그래서 선박에서 사용되는 수소의 안전성을 확보하기 위해서 수소의 누출·확산에 관한 유동 특성을 연구하는 것은 매우 중요하다. 본 연구에서는 선박 내부와 같은 밀폐공간에서 수소가 누출되었을 때 누출량, 통풍량, 환기 방식 등이 환기 성능에 어떤 영향을 미치는지에 대하여 수치적 해석을 수행하였다. 수치해석에는 CFD 상용 소프트웨어인 ANSYS CFX ver 18.1을 이용하였다. 누출량은 1 q = 1 g/s로 하여 1 q, 2 q, 3 q로 변경하였고, 통풍량은 1 Q = 0.91 m/s로 하여 1 Q, 2 Q, 3 Q로 변경하였으며 환기 방식은 typeI, typeII, typeIII로 변경하면서 환기 성능을 분석하였다. 누출량이 1 q에서 3 q로 증가할수록 저장실 내의 수소 몰분율(HMF)는 약 2.4 ~ 3.0배 높게 나타났으며 통풍량 증가는 누출량에 대비하여 약 62.0 ~ 64.8 % 정도 환기 성능이 개선에 효과가 있었다. 그리고 폭발의 위험성을 낮추기 위한 통풍량은 최소 2 Q 이상 되어야 하며, 수소탱크 저장실 내부의 부압 형성을 위해서는 type III가 가장 적합한 방식이라고 판단하였다.

Keywords

References

  1. Abdalla, A. M., S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad(2018), Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Conversion and Management, Vol. 165, pp. 602-627. https://doi.org/10.1016/j.enconman.2018.03.088
  2. Afghan Haji Abbas, M., S. Kheradmand, and H. Sadoughipour (2020), Numerical study of the effect of hydrogen leakage position and direction on hydrogen distribution in a closed enclosure, International Journal of Hydrogen Energy, Vol. 45, pp. 23872-23881. https://doi.org/10.1016/j.ijhydene.2020.06.202
  3. ANSYS Inc(2018), ANSYS CFX-Pre User's Guide.
  4. Giannissi, S. G., V. Shentsov, D. Melideo, B. Cariteau, D. Baraldi, A. G. Venetsanos, and V. Molkov(2015), CFD benchmark on hydrogen release and dispersion in confined, naturally ventilated space with one vent, International Journal of Hydrogen Energy, Vol. 40, pp. 2415-2429. https://doi.org/10.1016/j.ijhydene.2014.12.013
  5. Hajji, Y., M. Bouteraa, A. E. Cafsi, A. Belghith, P. Bournot, and F. Kallel(2014), Dispersion and behavior of hydrogen during a leak in a prismatic cavity, International Journal of Hydrogen Energy, Vol. 39, pp. 6111-6119. https://doi.org/10.1016/j.ijhydene.2014.01.159
  6. Hwang, D. J., B. L. Kil, S. K. Park, and M. H. Kim(2017), Numerical study on the location of exhaust outlet for effective ventilation in the event of hydrogen gas leakage in a hydrogen tank storeroom, Journal of the Korean Society of Marine Engineering, Vol. 41, No. 7, pp. 619-625.
  7. Ichard, M., O. R. Hansen, P. Middha, and D. Willoughby(2012), CFD computations of liquid hydrogen releases, International Journal of Hydrogen Energy, Vol. 37, pp. 17380-17389. https://doi.org/10.1016/j.ijhydene.2012.05.145
  8. IEA Bioenergy(2017), Biofuels for the marine shipping sector.
  9. Lacome, J. M., D. Jamois, L. Perrette, C. H. Proust(2011), Large-scale hydrogen release in an isothermal confined area, International Journal of Hydrogen Energy, Vol. 36, pp. 2302-2312. https://doi.org/10.1016/j.ijhydene.2010.10.080
  10. Launder, B. E. and D. B. Spalding(1974), The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  11. Lee, C. Y.(2022), A Numerical Analysis Study on the Optimal Ventilation of Hydrogen Tank Storage Room for a Ship, Graduate School Mokpo National Maritime University, doctorial thesis, pp. 1-156.
  12. Li, F., Y. Yuan, X. Yan, R. Malekian, and Z. Li(2018), A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship, Renewable and Sustainable Energy Reviews, Vol. 97, pp. 177-185. https://doi.org/10.1016/j.rser.2018.08.034
  13. Mao, X., R. Ying, Y. Yoan, F. Li, and B. Shen(2021), Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship, International Journal of Hydrogen Energy, Vol. 46, pp. 6857-6872. https://doi.org/10.1016/j.ijhydene.2020.11.158
  14. Middha, P., O. R. Hansen, and I. E. Storvik(2009), Validation of CFD-model for hydrogen dispersion, Journal of Loss Prevention in the Process Industries, Vol. 22, pp. 1034-1038. https://doi.org/10.1016/j.jlp.2009.07.020
  15. Prasad, K. and J. Yang(2011), Vertical release of hydrogen in a partially enclosed compartment: Role of wind and buoyancy, International Journal of Hydrogen Energy, Vol. 36, pp. 2478-2488. https://doi.org/10.1016/j.ijhydene.2010.03.124
  16. Schnurr, R. E. and T. R. Walker(2019), Marine transportation and energy use, Reference Module in Earth Systems and Environmental Sciences.
  17. Venetsanos, A. G., D. Baraldi, P. Adams, P. S. Heggem, and H. Wilkening(2008), CFD modelling of hydrogen release, dispersion and combustion for automotive scenarios, Journal of Loss Prevention in the Process Industries, Vol. 21, pp. 162-184. https://doi.org/10.1016/j.jlp.2007.06.016
  18. Zhang, J., M. A. Delichatsios, and A. G. Venetsanos(2010), Numerical studies of dispersion and flammable volume of hydrogen in enclosures, International Journal of Hydrogen Energy, Vol. 35, pp. 6431-6437. https://doi.org/10.1016/j.ijhydene.2010.03.107