DOI QR코드

DOI QR Code

Effect of competition between superconductivity and ferromagnetism in GdBa2Cu3O7-x/La0.7Sr0.3MnO3 bilayers

  • Oh, Jun-Yung (Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University) ;
  • Yang, Dong-Seok (Department of Physics Education, Chungbuk National University) ;
  • Kang, Byeongwon (Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University)
  • Received : 2022.03.22
  • Accepted : 2022.05.10
  • Published : 2022.06.30

Abstract

We studied the effect of substrate-induced strain state on the superconducting transition in GdBa2Cu3O7-x(GdBCO)/La0.7Sr0.3MnO3 (LSMO) bilayers deposited on a LaAlO3 (LAO) substrate. The stain state of LSMO is controlled by increasing the thickness from 20 nm to 80 nm. Analyses on the extended X-ray absorption fine structure (EXAFS) measurements reveal difference in the direction of MnO6 octahedral distortion depending on the LSMO thickness, which leads to a difference in anisotropy of magnetization of LSMO layer. The superconducting transitions of our system are strongly correlated with the magnetic anisotropy accompanied by the MnO6 octahedron distortion in a specific direction. This result suggests the possibility of improving the superconducting transition in the GdBCO/LSMO bilayer system by controlling the degree of competition between superconductivity and ferromagnetism via adjusting strain state in the LSMO layer.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2021R1I1A3044518).

References

  1. M M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazeles, "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattice" Phys. Rev. Lett., vol. 61, pp. 2472, 1988. https://doi.org/10.1103/PhysRevLett.61.2472
  2. R. B. Gangineni, L. Schultz, C. Thiele, I. Monch, and K. Dorr, "Reversible strain effect in La0.7Sr0.3MnO3 step edge junctions" Appl. Phys. Lett., vol. 91, pp. 122512, 2007. https://doi.org/10.1063/1.2787966
  3. Daniel Hsu, J. G. Lin, C. P. Chang, C. H. Chen, W. F. Wu, C. H. Chiang, and W. C. Chan, "Current enhanced magnetic proximity effect in Nd0.7Ca0.3MnO3/YBa2Cu3O7 bilayer" Appl. Phys. Lett., vol. 90, pp. 162504, 2007. https://doi.org/10.1063/1.2722673
  4. A. I. Buzdin, "Proximity effects in superconductor-ferromagnet heterostrucutres" Rev. Mod. Phys., vol. 77, pp. 935, 2005. https://doi.org/10.1103/RevModPhys.77.935
  5. M. G. Khusainov and Yu. N. Proshin, "Possibility of periodically reentrant superconductivity in ferromagnet/superconductor layered structures" Phys. Rev. B, vol. 56, pp. R14283, 1997. https://doi.org/10.1103/physrevb.56.r14283
  6. M. J. M. de Jong and C. W. J. Beenakker, "Andreev reflection in ferromagnet-superconductor junctions" Phys. Rev. Lett., vol. 74, pp. 1657, 1995. https://doi.org/10.1103/PhysRevLett.74.1657
  7. K. Senapati and R. C. Budhani, "Superconducting and normal-state interlayer exchange coupling in La0.67Sr0,33MnO3-YBa2Cu3O7-La0,67Sr0.33MnO3 epitaxial trilayers" Phys. Rev. B, vol. 71, pp. 224507, 2005. https://doi.org/10.1103/physrevb.71.224507
  8. P. Przyslupski, I. Komissarov, W. Paszkowicz, P. Dluzewski, R. Minikayev, and M. Sawicki, "Magnetic properties of La0.67Sr0,33MnO3/YBa2Cu3O7 superlattices" Phys. Rev. B, vol. 69, pp. 134428, 2004. https://doi.org/10.1103/physrevb.69.134428
  9. V. Pena, Z. Sefrioui, D. Arias, C. Leon, and J. Santamaria, M. Varela, S.J. Pennycook, and J.L. Martinez, "Coupling of superconductors through a half-metallic ferromagnet: Evidence for a long-range proximity effect" Phys. Rev. B, vol. 69, pp. 224502, 2004. https://doi.org/10.1103/physrevb.69.224502
  10. V. Pena, C. Visani, J. Garcia-Barriocanal, D. Arias,Z. Sefrioui, C. Leon, and J. Santamaria, "Spin diffusion versus proximity effect at ferromagnet/superconductor La0.7Sr0.3MnO3/YBa2Cu3O7-δ interface" Phys. Rev. B, vol. 73, pp. 104513, 2006. https://doi.org/10.1103/physrevb.73.104513
  11. E. A. Demler, G. B. Arnold, and M. R. Beasley, "Superconducting proximity effects in magnetic metals" Phys. Rev. B, vol. 55, pp. 15174, 1997. https://doi.org/10.1103/PhysRevB.55.15174
  12. T. Aytug, M. Paranthaman, B. W. Kang, S. Sathyamurthy, A. Goyal, and D. K. Christen, "La0.7Sr0.3MnO3: A single, conductive-oxide buffer layer for the development of YBa2Cu3O7-δ coated conductors" Appl. Phys. Lett., vol. 79, pp. 2205-2207, 2001. https://doi.org/10.1063/1.1405424
  13. J. G. Lin, S. L. Cheng, C. R. Chang, and D. Y. Xing, "Superconducting and transport properties of YBa2Cu3O7 / La0.7Sr0.3MnO3 bilayers" J. Appl. Phys., vol. 98, pp. 023910, 2005. https://doi.org/10.1063/1.1991973
  14. B. Ravel, "ATOMS: crystallography for the X-ray absorption spectroscopist," J. Synchrotron Radiat., vol. 8, pp. 314-316, 2001. https://doi.org/10.1107/s090904950001493x
  15. B. Ravel and M. Newville, "ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT," J. Synchrotron Radiat., vol. 12, pp. 537-541, 2005. https://doi.org/10.1107/S0909049505012719
  16. J. Y. Oh, C. Y. Song, Y. J. Ko, D. S. Yang, and B. Kang, "Strain-induced local structural change and its effect on the superconducting properties of GdBa2Cu3O7-x/La0.7Sr0.3MnO3 heterostructure" Supercond. Sci. Technol., vol. 33, pp. 075002, 2020. https://doi.org/10.1088/1361-6668/ab89ee
  17. S. Soltan, J. Albrecht, and H. -U. Habermeier, "Ferromagnetic/superconducting bilayer structure: A model system for spin diffusion length estimation" Phys. Rev. B, vol. 70, pp. 144517, 2004. https://doi.org/10.1103/physrevb.70.144517