DOI QR코드

DOI QR Code

Microbial Metagenome of Airborne Particulate Matter: Methodology, Characteristics, and Influencing Parameters

대기입자상물질의미생물메타게놈: 분석방법, 특성및영향인자

  • Kang, Sookyung (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 강수경 (이화여자대학교환경공학과) ;
  • 조경숙 (이화여자대학교환경공학과)
  • Received : 2021.12.27
  • Accepted : 2022.03.04
  • Published : 2022.06.28

Abstract

The microbial metagenome characteristics of bioaerosols and particulate matter (PM) in the outdoor atmospheric environment and the effects of climate and environmental factors on the metagenome were analyzed. The concentrations of bacteria and fungi in bioaerosols and PM were determined by sampling different regions with different environmental properties. A variety of culture-independent methods were used to analyze the microbial metagenome in aerosols and PM samples. In addition, the effects of meteorological and environmental factors on the diversity and metagenomes of bacteria and fungi were investigated. The survival, growth, and dispersal of the microorganisms in the atmosphere were markedly affected by local weather conditions and the air pollutant concentration. The concentration of airborne microorganisms increased as the temperature increased, but their concentration decreased in summer, due to the effects of high temperatures and strong ultraviolet rays. Humidity and microbial concentration were positively correlated, but when the humidity was too high, the dispersion of airborne microorganisms was inhibited. These comprehensive data on the microbial metagenome in bioaerosols and PM may be used to understand the roles and functions of microorganisms in the atmosphere, and to develop strategies and abatement techniques to address the environmental and public health problems caused by these microorganisms.

본 논문에서는 실외 대기 환경의 바이오에어로졸 혹은 입자상물질의 미생물 메타게놈 특성과 이에 영향을 미치는 기후 및 환경 인자의 영향을 고찰하였다. 시료 채취 지역 및 환경 조건 특성별 대기 중 세균과 곰팡이 농도를 요약 하고, 에어로졸과 PM 시료의 세균과 곰팡이의 메타게놈 특성을 조사하기 위한 비배양법 기반 분석방법과 메타게놈 특성을 정리하였다. 또한, 세균과 곰팡이의 메타게놈 특성과 다양성 및 특성에 미치는 기상 인자와 환경 인자의 영향을 고찰하였다. 대기 중 미생물의 생존, 생장과 분산은 지역 기상 조건 및 대기 오염 물질에 의해 크게 영향을 받았다. 일반적으로 기온이 상승함에 따라 AM 농도는 증가하지만, 여름에는 고온과 강한 자외선의 영향으로 AM 농도가 감소하였다. 습도와 미생물 농도는 양의 상관성을 보이나, 습도가 너무 높으면 AM의 분산이 지연되었다. 이러한 종합적인 고찰 결과는 대기권에서 미생물의 역할과 기능을 이해하고, 이들 미생물에 의해 야기되는 환경 및 공중보건 문제를 해결하기 위한 전략 수립 및 저감 기술 개발에 활용될 수 있다.

Keywords

Acknowledgement

This work was supported by the Technology Development Program to Solve Climate Change of the National Research Foundation (NRF) funded by the Ministry of Science and ICT (2017 M1A2A2086515).

References

  1. Smets W, Moretti S, Denys S, Lebeer S. 2016. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 139: 214-221. https://doi.org/10.1016/j.atmosenv.2016.05.038
  2. Yoo K, Lee TK, Choi EJ, Yang J, Shukla SK, Hwang S, et al. 2017. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. J. Environ. Sci. 51: 234-247. https://doi.org/10.1016/j.jes.2016.07.002
  3. Zhai Y, Li X, Wang T, Wang B, Li C, Zeng G. 2018. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environ. Int. 113: 74-90. https://doi.org/10.1016/j.envint.2018.01.007
  4. Kathiriya T, Gupta A, Singh NK. 2021. An opinion review on sampling strategies, enumeration techniques, and critical environmental factors for bioaerosols: An emerging sustainability indicator for society and cities. Environ. Technol. Innov. 21: 101287. https://doi.org/10.1016/j.eti.2020.101287
  5. Frohlichnowoisky J. 2016. Bioaerosols in the earth system: climate, health, and ecosystem interactions. Atmos. Res. 182: 346-376. https://doi.org/10.1016/j.atmosres.2016.07.018
  6. Kim KH, Kabir E, Kabir S. 2015. A review on the human health impact of airborne particulate matter. Environ. Int. 74: 136-143. https://doi.org/10.1016/j.envint.2014.10.005
  7. Stetzenbach LD, Buttner MP, Cruz P. 2004. Detection and enumeration of airborne biocontaminants. Curr. Opin. Biotechnol. 15: 170-174. https://doi.org/10.1016/j.copbio.2004.04.009
  8. Henderson TJ, Salem H. 2016. CHAPTER 1: The atmosphere: Its developmental history and contributions to microbial evolution and habitat, pp. 1-41. In Salem H, Katz SA (eds.), Aerobiology: The toxicology of airborne pathogens and toxins, 1st Ed. Royal Society of Chemistry, London.
  9. Gandolfi I, Bertolini V, Ambrosini R, Bestetti G, Franzetti A. 2013. Unravelling the bacterial diversity in the atmosphere. Appl. Microbiol. Biotechnol. 97: 4727-4736. https://doi.org/10.1007/s00253-013-4901-2
  10. Jaenicke R. 2005. Abundance of cellular material and proteins in the atmosphere. Science 308: 73. https://doi.org/10.1126/science.1106335
  11. Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL. 2007. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. USA 104: 299-304. https://doi.org/10.1073/pnas.0608255104
  12. Jones AM, Harrison RM. 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations - a review. Sci. Total Environ. 326: 151-180. https://doi.org/10.1016/j.scitotenv.2003.11.021
  13. Bertolini V, Gandolfi I, Ambrosini R, Bestetti G, Innocente E, Rampazzo G, et al. 2013. Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Appl. Microbiol. Biotechnol. 97: 6561-6570. https://doi.org/10.1007/s00253-012-4450-0
  14. Matthias-Maser S, Obolkin V, Khodzer T, Jaenicke R. 2000. Seasonal variation of primary biological aerosol particles in the remote continental region of Lake Baikal/Siberia. Atmos. Environ. 34: 3805-3811. https://doi.org/10.1016/S1352-2310(00)00139-4
  15. Fahlgren C, Bratbak G, Sandaa R, Thyrhaug R, Zweifel UL. 2011. Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia 27: 107-120. https://doi.org/10.1007/s10453-010-9181-z
  16. Maki T, Susuki S, Kobayashi F, Kakikawa M, Yamada M, Higashi T, et al. 2008. Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region, Dunhuang City. Air Qual. Atmos. Health 1: 81-89. https://doi.org/10.1007/s11869-008-0016-9
  17. Maron PA, Lejon DP, Carvalho E, Bizet K, Lemanceau P, Ranjard L, et al. 2005. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos. Environ. 39: 3687-3695. https://doi.org/10.1016/j.atmosenv.2005.03.002
  18. Barberan A, Henley J, Fierer N, Casamayor EO. 2014. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Sci. Total Environ. 487: 187- 195. https://doi.org/10.1016/j.scitotenv.2014.04.030
  19. Maki T, Kakikawa M, Kobayashi F, Yamada M, Matsuki A, Hasegawa H, et al. 2013. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan. Atmos. Environ. 74: 73-82. https://doi.org/10.1016/j.atmosenv.2013.03.029
  20. Bottos EM, Woo AC, Zawar-Reza P, Pointing SB, Cary SC. 2014. Airborne bacterial populations above desert soils of the McMurdo dry valleys. Antarctica. Micro. Ecol. 67: 120-128. https://doi.org/10.1007/s00248-013-0296-y
  21. DeLeon-Rodriguez N, Lathem TL, Rodriguez-R LM, Barazesh JM, Anderson BE, Beyersdorf AJ, et al. 2013. Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc. Natl. Acad. Sci. USA 110: 2575-2580. https://doi.org/10.1073/pnas.1212089110
  22. Maier RM, Gentry TJ. 2014. Chapter 17: Microorganisms and organic pollutants. pp. 415-439. In Pepper I, Gerba C, Gentry T (eds.), Environmental Microbiology, 3rd Ed. Academic Press, San Diego, USA.
  23. Lighthart B. 2000. Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. Aerobiologia 16: 7-16. https://doi.org/10.1023/A:1007694618888
  24. Georgakopoulos DG, Despres V, Frohlich-Nowoisky J, Psenner R, Ariya PA, Posfai M, et al. 2009. Microbiology and atmospheric processes: biological, physical and chemical charac-terization of aerosol particles. Biogeosciences 6: 721-737. https://doi.org/10.5194/bg-6-721-2009
  25. Deguillaume L, Leriche M, Amato P, Ariya PA, Delort AM, Poschl U, et al. 2008. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols. Biogeosciences 5: 1073-1084. https://doi.org/10.5194/bg-5-1073-2008
  26. Fierer N, Liu Z, Rodriguez-Hernandez M, Knight R, Henn M, Hernandez MT. 2008. Short-term temporal variability in airborne bacterial and fungal populations. Appl. Environ. Microbiol. 74: 200-207. https://doi.org/10.1128/AEM.01467-07
  27. Ariya PA, Amyot M. 2004. New directions: the role of bioaerosols in atmospheric chemistry and physics. Atmos. Environ. 38: 1231-1233. https://doi.org/10.1016/j.atmosenv.2003.12.006
  28. Christner BC, Morris CE, Foreman CM, Cai R, Sands DC. 2008. Ubiquity of biological ice nucleators in snowfall. Science 319: 1214. https://doi.org/10.1126/science.1149757
  29. Pratt KA, Demott PJ, French JR, Wang Z, Westphal DL, Heymsfield AJ, et al. 2009. In situ detection of biological particles in cloud ice-crystals. Nat. Geosci. 2: 398-401. https://doi.org/10.1038/ngeo521
  30. Jones SE, Newton RJ, McMahon KD. 2008. Potential for atmospheric deposition of bacteria to influence bacterioplankton communities. FEMS Microbiol. Ecol. 64: 388-394. https://doi.org/10.1111/j.1574-6941.2008.00476.x
  31. Peter H, Hortnagl P, Reche I, Sommaruga R. 2014. Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps. Environ. Microbiol. Rep. 6: 618-624. https://doi.org/10.1111/1758-2229.12175
  32. Rolph CA, Gwyther CL, Tyrrel SF, Nasir ZA, Drew GH, Jackson SK, et al. 2018. Sources of airborne endotoxins in ambient air and exposure of nearby communities-a review. Atmosphere 9: 375. https://doi.org/10.3390/atmos9100375
  33. Tang K, Huang Z, Huang J, Maki T, Zhang S, Shimizu A, et al. 2018. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign. Atmos. Chem. Phys. 18: 7131-7148. https://doi.org/10.5194/acp-18-7131-2018
  34. Goudarzi G, Shirmardi M, Khodarahmi F, Hashemi-Shahraki A, Alavi N, Ankali KA, et al. 2014. Particulate matter and bacteria characteristics of the Middle East Dust (MED) storms over Ahvaz, Iran. Aerobiologia 30: 345-356. https://doi.org/10.1007/s10453-014-9333-7
  35. Li Y, Fu H, Wang W, Liu J, Meng Q, Wang W. 2015. Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi'an, China. Atmos. Environ. 122: 439-447. https://doi.org/10.1016/j.atmosenv.2015.09.070
  36. Fang Z, Yao W, Lou X, Hao C, Gong C, Ouyang Z. 2016. Profile and characteristics of culturable airborne bacteria in Hangzhou, Southeast of China. Aerosol Air Qual. Res. 16: 1690-1700. https://doi.org/10.4209/aaqr.2014.11.0274
  37. Gao M, Yan X, Qiu T, Han M, Wang X. 2016. Variation of correlations between factors and culturable airborne bacteria and fungi. Atmos. Environ. 128: 10-19. https://doi.org/10.1016/j.atmosenv.2015.12.008
  38. Ji L, Zhang Q, Fu X, Zheng L, Dong J, Wang J, Guo S. 2019. Feedback of airborne bacterial consortia to haze pollution with different PM2.5 levels in typical mountainous terrain of Jinan, China. Sci. Total Environ. 695: 133912. https://doi.org/10.1016/j.scitotenv.2019.133912
  39. Bowers RM, McLetchie S, Knight R, Fierer N. 2011. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5: 601-612. https://doi.org/10.1038/ismej.2010.167
  40. Bowers RM, McCubbin IB, Hallar AG, Fierer N. 2012. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 50: 41-49. https://doi.org/10.1016/j.atmosenv.2012.01.005
  41. Dong L, Qi J, Shao C, Zhong X, Gao D, Cao W, et al. 2016. Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci. Total Environ. 541: 1011-1018. https://doi.org/10.1016/j.scitotenv.2015.10.001
  42. Murata K, Zhang D. 2016. Concentration of bacterial aerosols in response to synoptic weather and land-sea breeze at a seaside site downwind of the Asian continent. J. Geophys. Res. Atmos. 121: 11636-11647.
  43. Genitsaris S, Stefanidou N, Katsiapi M, Kormas KA, Sommer U, Moustaka-Gouni M. 2017. Variability of airborne bacteria in an urban Mediterranean area (Thessaloniki, Greece). Atmos. Environ. 157: 101-110. https://doi.org/10.1016/j.atmosenv.2017.03.018
  44. Liu H, Zhang X, Zhang H, Yao X, Zhou M, Wang J, et al. 2018. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environ. Pollut. 233: 483-493. https://doi.org/10.1016/j.envpol.2017.10.070
  45. Liu T, Chen LWA, Zhang M, Watson JG, Chow JC, Cao J, et al. 2019. Bioaerosol concentrations and size distributions during the autumn and winter seasons in an industrial city of central China. Aerosol Air Qual. Res. 19: 1095-1104. https://doi.org/10.4209/aaqr.2018.11.0422
  46. Bai W, Li Y, Xie W, Ma T, Hou J, Zeng X. 2021. Vertical variations in the concentration and community structure of airborne microbes in PM2.5. Sci. Total Environ. 760: 143396. https://doi.org/10.1016/j.scitotenv.2020.143396
  47. Lee SH, Lee HJ, Kim SJ, Lee HM, Kang H, Kim YP. 2010. Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR. Sci. Total Environ. 408: 1349-1357. https://doi.org/10.1016/j.scitotenv.2009.10.061
  48. Tanaka D, Terada Y, Nakashima T, Sakatoku A, Nakamura S. 2015. Seasonal variations in airborne bacterial community structures at a suburban site of central Japan over a 1-year time period using PCR-DGGE method. Aerobiologia 31: 143-157. https://doi.org/10.1007/s10453-014-9353-3
  49. Gao JF, Fan XY, Li HY, Pan KL. 2017. Airborne bacterial communities of PM2.5 in Beijing-Tianjin-Hebei megalopolis, China as revealed by Illumina MiSeq sequencing: A case study. Aerosol Air Qual. Res. 17: 788-798. https://doi.org/10.4209/aaqr.2016.02.0087
  50. Wei M, Xu C, Xu X, Zhu C, Li J, Lv G. 2019. Characteristics of atmospheric bacterial and fungal communities in PM2.5 following biomass burning disturbance in a rural area of North China Plain. Sci. Total Environ. 651: 2727-2739. https://doi.org/10.1016/j.scitotenv.2018.09.399
  51. Wei M, Liu H, Chen J, Xu C, Li J, Xu P, Sun Z. 2020. Effects of aerosol pollution on PM2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. Environ. Pollut. 262: 114188. https://doi.org/10.1016/j.envpol.2020.114188
  52. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. 2001. rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 29: 181-184. https://doi.org/10.1093/nar/29.1.181
  53. Van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E, et al. 2007. Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on OpenArraysTM. BMC Genomics 8: 276. https://doi.org/10.1186/1471-2164-8-276
  54. Raisi L, Aleksandropoulou V, Lazaridis M, Katsivela E. 2013. Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site. Aerobiologia 29: 233-248. https://doi.org/10.1007/s10453-012-9276-9
  55. Gordon J, Gandhi P, Shekhawat G, Frazier A, Hampton-Marcell J, Gilbert JA. 2015. A simple novel device for air sampling by electrokinetic capture. Microbiome 3: 79. https://doi.org/10.1186/s40168-015-0141-2
  56. Mbareche H, Veillette M, Bilodeau GJ, Duchaine C. 2018. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 84: 1589-1607.
  57. Haig CW, Mackay WG, Walker JT, Williams C. 2016. Bioaerosol sampling: sampling mechanisms, bio-efficiency and field studies. J. Hosp. Infect. 93: 242-255. https://doi.org/10.1016/j.jhin.2016.03.017
  58. Nunez A, Amo de Paz G, Rastrojo A, Garcia AM, Alcami A, Gutierrez-Bustillo AM, et al. 2016. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios. Int. Microbiol. 19: 1-13.
  59. Du P, Du R, Ren W, Lu Z, Fu P. 2018b. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 610-611: 308-315. https://doi.org/10.1016/j.scitotenv.2017.07.097
  60. Cao C, Jiang WJ, Wang BY, Fang JH, Lang JD, Tian G, Jiang JK, Zhu TF. 2014. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 48: 1499-1507. https://doi.org/10.1021/es4048472
  61. Pan Y, Luo L, Xiao H, Zhu R, Xiao H. 2020. Spatial variability of inhalable fungal communities in airborne PM2.5 across Nanchang, China. Sci. Total Environ. 746: 141171. https://doi.org/10.1016/j.scitotenv.2020.141171
  62. Du P, Du R, Ren W, Lu Z, Zhang Y, Fu P. 2018a. Variations of bacteria and fungi in PM2.5 in Beijing, China. Atmos. Environ. 172: 55-64. https://doi.org/10.1016/j.atmosenv.2017.10.048
  63. Radosevich JL, Wilson WJ, Shinn JH, DeSantis TZ, Andersen GL. 2002. Development of a high-volume aerosol collection system for the identification of air-borne micro-organisms. Appl. Microbiol. 34: 162-167. https://doi.org/10.1046/j.1472-765x.2002.01048.x
  64. Li H, Shan Y, Huang Y, An Z, Xu G, Wei F, Zhang C, Wu W. 2019. Bacterial community specification in PM2. 5 in different seasons in Xinxiang, central China. Aerosol Air Qual. Res. 19: 1355-1364. https://doi.org/10.4209/aaqr.2018.12.0467
  65. Frohlich-Nowoisky J, Pickersgill DA, Despres VR, Poschla U. 2009. High diversity of fungi in air particulate matter. PNAS 106: 12814-12819. https://doi.org/10.1073/pnas.0811003106
  66. Chen H, Du R, Zhang Y, Zhang S, Ren W, Du P. 2021. Survey of background microbial index in inhalable particles in Beijing. Sci. Total Environ. 757: 143743. https://doi.org/10.1016/j.scitotenv.2020.143743
  67. Fan XY, Gao JF, Pan KL, Li DC, Dai HH, Li X. 2019. More obvious air pollution impacts on variations in bacteria than fungi and their co-occurrences with ammonia-oxidizing microorganisms in PM2.5. Environ. Pollut. 251: 668-680. https://doi.org/10.1016/j.envpol.2019.05.004
  68. Zhong S, Zhang L, Jiang X, Gao P. 2019. Comparison of chemical composition and airborne bacterial community structure in PM2.5 during haze and non-haze days in the winter in Guilin, China. Sci. Total Environ. 655: 202-210. https://doi.org/10.1016/j.scitotenv.2018.11.268
  69. Qi Y, Li Y, Xie W, Lu R, Mu F, Bai W, Du S. 2020. Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions. Sci. Total Environ. 708: 135027. https://doi.org/10.1016/j.scitotenv.2019.135027
  70. Park EH, Heo J, Kim H, Yi SM. 2020. The major chemical constituents of PM2.5 and airborne bacterial community phyla in Beijing, Seoul, and Nagasaki. Chemosphere 254: 126870. https://doi.org/10.1016/j.chemosphere.2020.126870
  71. Puspitasari F, Maki T, Shi G, Bin C, Kobayashi F, Hasegawa H, et al. 2016. Phylogenetic analysis of bacterial species compositions in sand dunes and dust aerosol in an Asian dust source area, the Taklimakan desert. Air Qual. Atmos. Heal. 9: 631-644. https://doi.org/10.1007/s11869-015-0367-y
  72. Lee JY, Park EH, Lee S, Ko G, Honda Y, Hashizume M, et al. 2017. Airborne bacterial communities in three East Asian Cities of China, South Korea, and Japan. Sci. Rep. 7: 5545. https://doi.org/10.1038/s41598-017-05862-4
  73. Williams RH, Ward E, McCartney HA. 2001. Methods for Integrated air sampling and DNA analysis for detection of airborne fungal spores. Appl. Environ. Microbiol. 67: 2453-2459. https://doi.org/10.1128/AEM.67.6.2453-2459.2001
  74. Yooseph S, Andrews-Pfannkoch C, Tenney A, McQuaid J, Williamson S, Thiagarajan M, et al. 2013. A metagenomic framework for the study of airborne microbial communities. PLoS One 8: e81862. https://doi.org/10.1371/journal.pone.0081862
  75. Vokou D, Vareli K, Zarali E, Karamanoli K, Constantinidou HIA, Monokrousos N, et al. 2012. Exploring biodiversity in the bacterial community of the mediterranean phyllosphere and its relationship with airborne bacteria. Microb. Ecol. 64: 714-724. https://doi.org/10.1007/s00248-012-0053-7
  76. Sanchez-Parra B, Nunez A, Garcia AM, Campoy P, Moreno DA. 2021. Distribution of airborne pollen, fungi and bacteria at four altitudes using high-throughput DNA sequencing. Atmos. Res. 249: 105306. https://doi.org/10.1016/j.atmosres.2020.105306
  77. Serrano-Silva N, Calderon-Ezquerro MC. 2018. Metagenomic survey of bacterial diversity in the atmosphere of Mexico city using different sampling methods. Environ. Pollut. 235: 20-29. https://doi.org/10.1016/j.envpol.2017.12.035
  78. Kraaijeveld K, De Weger LA, Garcia MV, Buermans H, Frank J, Hiemstra PS, et al. 2015. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol. Ecol. Resour. 15: 8-16. https://doi.org/10.1111/1755-0998.12288
  79. Seifried JS, Wichels A, Gerdts G. 2015. Spatial distribution of marine airborne bacterial communities. Microbiologyopen 4: 475-490. https://doi.org/10.1002/mbo3.253
  80. Tate KG, Ogawa JM, Yates WE, Sturgeon G. 1980. Performance of a cyclone spore trap. Phytopathology 70: 285-290. https://doi.org/10.1094/Phyto-70-285
  81. Lindsley WG, Green BJ, Bleacher FM, Martin SB, Law BF, Jensen PA, Schafer MP. 2017. Sampling and characterization of bioaerosols, pp. BA1-115. In Ashley K, O'Connor PF (eds.), NIOSH Manual of Analytical Methods, 5th Ed. National Institute for Occupational Safety and Health (NIOSH), USA.
  82. Mainelis G. 2020. Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol Sci. Technol. 54: 496-519. https://doi.org/10.1080/02786826.2019.1671950
  83. Matsuda S, Kawashima S. 2018. Relationship between laser light scattering and physical properties of airborne pollen. J. Aerosol Sci. 124: 122-132. https://doi.org/10.1016/j.jaerosci.2018.07.009
  84. Yao M, Mainelis G. 2006. Investigation of cut-off sizes and collection efficiencies of portable microbial samplers. Aerosol Sci. Technol. 40: 595-606. https://doi.org/10.1080/02786820600729146
  85. Guo F, Zhang T. 2013. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl. Microbiol. Biotechnol. 97: 4607-4616. https://doi.org/10.1007/s00253-012-4244-4
  86. Mescioglu E, Paytan A, Mitchell BW, Griffin DW. 2021. Efficiency of bioaerosol samplers: a comparison study. Aerobiologia 37: 447-459. https://doi.org/10.1007/s10453-020-09686-0
  87. Aguayo J, Fourrier-Jeandel C, Husson C, Loos R. 2018. Assessment of passive traps combined with high-throughput. Appl. Environ. Microbiol. 84: e02637-17.
  88. Wei K, Zou Z, Zheng Y, Li J, Shen F, Wu C, et al. 2016. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci. Total Environ. 550: 751-759. https://doi.org/10.1016/j.scitotenv.2016.01.137
  89. Johnson MD, Cox RD, Barnes MA. 2019. Analyzing airborne environmental DNA: A comparison of extraction methods, primer type, and trap type on the ability to detect airborne eDNA from terrestrial plant communities. Environ. DNA 1: 176-185. https://doi.org/10.1002/edn3.19
  90. Luhung I, Wu Y, Ng CK, Miller D, Cao B, Chang VW-C. 2015. Protocol improvements for low concentration DNA-based bioaerosol sampling and analysis. PLoS One 10: e0141158. https://doi.org/10.1371/journal.pone.0141158
  91. Hospodsky D, Yamamoto N, Peccia J. 2010. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Appl. Environ. Microbiol. 76: 7004-7012. https://doi.org/10.1128/AEM.01240-10
  92. Innis MA. 1990. PCR protocols?: a guide to methods and applications, pp. 311-316. 1st Ed. Academic Press, Massachusetts, USA.
  93. Nossa CW. 2010. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 16: 4135. https://doi.org/10.3748/wjg.v16.i33.4135
  94. Singh J, Birbian N, Sinha S, Goswami A. 2014. A critical review on PCR, its types and applications. Int. J. Adv. Res. Biol. Sci. 1: 65-80.
  95. Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, et al. 2021. Primer, pipelines, parameters: Issues in 16S rRNA gene sequencing. Msphere 6: e01202-20.
  96. Madsen AM, Zervas A, Tendal K, Nielsen JL. 2015. Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF. Environ. Res. 140: 255-267. https://doi.org/10.1016/j.envres.2015.03.027
  97. Woo AC, Brar MS, Chan Y, Lau MC, Leung FC, Scott JA, et al. 2013. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmos. Environ. 74: 291-300. https://doi.org/10.1016/j.atmosenv.2013.03.047
  98. Leontidou K, Vernesi C, De Groeve J, Cristofolini F, Vokou D, Cristofori A. 2018. DNA metabarcoding of airborne pollen: new protocols for improved taxonomic identification of environmental samples. Aerobiologia 34: 63-74. https://doi.org/10.1007/s10453-017-9497-z
  99. Aziza AA, Lee K, Park B, Park H, Park K, Choi IG, et al. 2018. Comparative study of the airborne microbial communities and their functional composition in fine particulate matter (PM2.5) under non-extreme and extreme PM2.5 conditions. Atmos. Environ. 194: 82-92. https://doi.org/10.1016/j.atmosenv.2018.09.027
  100. Maki T, Hara K, Kobayashi F, Kurosaki Y, Kakikawa M, Matsuki A, et al. 2015. Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula. Atmos. Environ. 119: 282-293. https://doi.org/10.1016/j.atmosenv.2015.08.052
  101. Campa AS, Garcia-Salamanca A, Solano J, Rosa J, Ramos J. 2013. Chemical and microbiological characterization of atmospheric particulate matter during an intense African dust event in southern Spain. Environ. Sci. Technol. 47: 3630-3638. https://doi.org/10.1021/es3051235
  102. Haas D, Defago G. 2005. Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nat. Rev. Microbiol. 3: 307-319. https://doi.org/10.1038/nrmicro1129
  103. Xu C, Wei M, Chen J, Wang X, Zhu C, Li J, et al. 2017. Bacterial characterization in ambient submicron particles during severe haze episodes at Ji'nan, China. Sci. Total Environ. 580: 188-196. https://doi.org/10.1016/j.scitotenv.2016.11.145
  104. Hu J, He XH, Li DP, Liu Q. 2007. Progress in research of Spingomonas. Chin. J. Appl. Environ. Biol. 13: 431-437. https://doi.org/10.3321/j.issn:1006-687X.2007.03.030
  105. Gandolfi I, Bertolini V, Bestetti G, Ambrosini R, Innocente E, Rampazzo G, et al. 2015. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas. Appl. Microbiol. Biotechnol. 99: 4867-4877. https://doi.org/10.1007/s00253-014-6348-5
  106. Federici E, Petroselli C, Montalbani E, Casagrande C, Ceci E, Moroni B, et al. 2018. Airborne bacteria and persistent organic pollutants associated with an intense Saharan dust event in the Central Mediterranean. Sci. Total Environ. 645: 401-410. https://doi.org/10.1016/j.scitotenv.2018.07.128
  107. Awad AHA, Elmorsy TH, Tarwater PM, Green CF, Gibbs SG. 2010. Air biocontamination in a variety of agricultural industry environments in Egypt: a pilot study. Aerobiologia 26: 223-232. https://doi.org/10.1007/s10453-010-9158-y
  108. Gangamma S. 2014. Characteristics of airborne bacteria in Mumbai urban environment. Sci. Total Environ. 488-489: 70-74. https://doi.org/10.1016/j.scitotenv.2014.04.065
  109. Gao M, Qiu T, Jia R, Han M, Song Y, Wang X. 2015. Concentration and size distribution of viable bioaerosols during nonhaze and haze days in Beijing. Environ. Sci. Pollut. Res. Int. 22: 4359-4368. https://doi.org/10.1007/s11356-014-3675-0
  110. Yan D, Zhang T, Su J, Zhao LL, Wang H, Fang XM, et al. 2016. Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days. Front. Microbiol. 7: 487.
  111. Li Y, Lu R, Li W, Xie Z, Song Y. 2017. Concentrations and size distributions of viable bioaerosols under various weather conditions in a typical semi-arid city of Northwest China. J. Aerosol Sci. 106: 83-92. https://doi.org/10.1016/j.jaerosci.2017.01.007
  112. Xie Z, Li Y, Lu R, Li W, Fan C, Liu P, et al. 2018. Characteristics of total airborne microbes at various air quality levels. J. Aerosol Sci. 116: 57-65. https://doi.org/10.1016/j.jaerosci.2017.11.001
  113. Li J, Chen H, Li X, Wang M, Zhang X, Cao J, et al. 2019. Differing toxicity of ambient particulate matter (PM) in global cities. Atmos. Environ. 212: 305-315 https://doi.org/10.1016/j.atmosenv.2019.05.048
  114. Tong Y. 1999. Diurnal distribution of total and culturable atmospheric bacteria at a rural site. Aerosol Sci. Technol. 30: 246-254. https://doi.org/10.1080/027868299304822
  115. Fang Z, Ouyang Z, Zheng H, Wang X, Hu L. 2007. Culturable airborne bacteria in outdoor environments in Beijing, China. Microb. Ecol. 54: 487-496. https://doi.org/10.1007/s00248-007-9216-3
  116. Zheng WC, Zhao Y, Xin HW, Li BM, Gates R. 2013. Concentrations and size distributions of airborne particulate matter and bacteria in an experimental aviary laying-hen chamber. Trans. ASABE 56: 1493-1501.
  117. Garaga R, Avinash CKR, Kota SH. 2019. Seasonal variation of airborne allergenic fungal spores in ambient PM 10 - a study in Guwahati, the largest city of north-east India. Air Qual. Atmos. Health. 12: 11-20. https://doi.org/10.1007/s11869-018-0624-y
  118. Rathnayake CM, Metwali N, Jayarathne T, Kettler J, Huang Y, Thorne PS, et al. 2017. Influence of rain on the abundance of bioaerosols in fine and coarse particles. Atmos. Chem. Phys. 17: 2459-2475. https://doi.org/10.5194/acp-17-2459-2017
  119. Kumar P, Mahor P, Goel AK, Kamboj DV, Kumar O. 2011. Aero-microbiological study on distribution pattern of bacteria and fungi during weekdays at two different locations in urban atmosphere of Gwalior, Central India. Sci. Res. Essays 6: 5435-5441.
  120. Spasojevic MJ, Grace JB, Harrison S, Damschen EI. 2014. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. J. Ecol. 102: 447-455. https://doi.org/10.1111/1365-2745.12204
  121. Bragoszewska E, Pastuszka JS. 2018. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia 34: 241-255. https://doi.org/10.1007/s10453-018-9510-1
  122. Kowalski M, Pastuszka JS. 2017. Effect of ambient air temperature and solar radiation on changes in bacterial and fungal aerosols concentration in the urban environment. Ann. Agric. Environ. Med. AAEM. 25: 259-261. https://doi.org/10.26444/aaem/75877
  123. Naruka K, Heda S. 2018. A preliminary study on fungal air spora at railway station with special reference to summer season. Int. Res. J. Environ. Sci. 7: 52-55.
  124. Kumar A, Attri AK. 2016. Characterization of fungal spores in ambient particulate matter: a study from the Himalayan region. Atmos. Environ. 142: 182-193. https://doi.org/10.1016/j.atmosenv.2016.07.049
  125. Chakrabarti HS, Das S, Gupta-Bhattacharya S. 2012. Outdoor airborne fungal spora load in a suburb of kolkata, India: its variation, meteorological determinants and health impact. Int. J. Environ. Health Res. 22: 37-50. https://doi.org/10.1080/09603123.2011.588323
  126. Tang JW. 2009. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 6: S737-S746.
  127. Alghamdi MA, Shamy M, Redal MA, Khoder M, Awad AH, Elserougy S. 2014. Microorganisms associated particulate matter: a preliminary study. Sci. Total Environ. 479-480: 109-116. https://doi.org/10.1016/j.scitotenv.2014.02.006
  128. Almaguer M, Aira MJ, Rodriguez-Rajo FJ, Rojas TI. 2014. Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: influence of meteorological parameters. Int. J. Biometeorol. 58: 1459-1470. https://doi.org/10.1007/s00484-013-0748-6
  129. Quintero E, Rivera-Mariani F, Bolanos-Rosero B. 2009. Analysis of environmental factors and their effects on fungal spores in the atmosphere of a tropical urban area (San Juan, Puerto Rico). Aerobiologia 26: 113-124. https://doi.org/10.1007/s10453-009-9148-0
  130. Rivera-Mariani FE, Bolanos-Rosero B. 2012. Allergenicity of airborne basidiospores and ascospores: need for further studies. Aerobiologia 28: 83-97. https://doi.org/10.1007/s10453-011-9234-y
  131. Frohlichnowoisky J, Ruzene Nespoli C, Pickersgill DA, Galand PE, Mullergermann I, Nunes T. 2014. Diversity and seasonal dynamics of airborne archaea. Biogeosciences 11: 6067-6079. https://doi.org/10.5194/bg-11-6067-2014
  132. Sousa SIV, Martins FG, Pereira MC, Alvim-Ferraz MCM, Ribeiro H, Oliveira M, et al. 2008. Influence of atmospheric ozone, PM10 and meteorological factors on the concentration of airborne pollen and fungal spores. Atmos. Environ. 42: 7452-7464. https://doi.org/10.1016/j.atmosenv.2008.06.004
  133. Zhen Q, Deng Y, Wang Y, Wang X, Zhang H, Sun X, et al. 2017. Meteorological factors had more impact on airborne bacterial communities than air pollutants. Sci. Total Environ. 601-602: 703-712. https://doi.org/10.1016/j.scitotenv.2017.05.049
  134. Lu R, Li Y, Li W, Xie Z, Fan C, Liu P, et al. 2018. Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi'an, China. Sci. Total Environ. 637-638: 244-252. https://doi.org/10.1016/j.scitotenv.2018.05.006
  135. Erkara IP, Asan A, Yilmaz V, Pehlivan S, Okten SS. 2008. Airborne Alternaria and Cladosporium species and relationship with meteorological conditions in Eskisehir City, Turkey. Environ. Monit. Assess. 144: 31-41. https://doi.org/10.1007/s10661-007-9939-0
  136. Hollins PD, Kettlewell PS, Atkinson MD, Stephenson DB, Corden JM, Millington WM, et al. 2004. Relationships between airborne fungal spore concentration of Cladosporium and the summer climate at two sites in Britain. Int. J. Biometeorol. 48: 137-141. https://doi.org/10.1007/s00484-003-0188-9
  137. Umesh BK. 2014. Study of biodiversity of fungal bioaerosols in mumbai Metropolis. Int. J. Res. Biosci. Agric. Technol. 2: 193-2015.
  138. Xu C, Wei M, Chen J, Zhu C, Li J, Lv G, et al. 2017. Fungi diversity in PM2.5 and PM1 at the summit of Mt. Tai: abundance, size distribution, and seasonal variation. Atmos. Chem. Phys. 17: 1147-11260.
  139. Knudsen SM, Gunnarsen L, Madsen AM. 2017. Airborne fungal species associated with mouldy and non-mouldy buildings - effects of air change rates, humidity, and air velocity. Build. Sci. 122: 161-170.
  140. Corden JM, Millington WM. 2001. The long-term trends and seasonal variation of the aeroallergen alternaria in derby. Aerobiologia 17: 127-136. https://doi.org/10.1023/A:1010876917512
  141. Grinn-Gofron A, Nowosad J, Bosiacka B, Camacho I, Pashley C, Belmonte J, et al. 2019. Airborne alternaria and cladosporium fungal spores in europe: Forecasting possibilities and relationships with meteorological parameters. Sci. Total Environ. 653: 938-946. https://doi.org/10.1016/j.scitotenv.2018.10.419
  142. Li DW, Kendrick B. 1995. A year-round study on functional relationships of airborne fungi with meteorological factors. Int. J. Biometeorol. 39: 74-80. https://doi.org/10.1007/BF01212584
  143. Savage D, Barbetti MJ, MacLeod WJ, Salam MU, Renton M. 2012. Mobile traps are better than stationary traps for surveillance of airborne fungal spores. Crop Prot. 36: 23-30. https://doi.org/10.1016/j.cropro.2012.01.015
  144. Zhong X, Qi J, Li H, Dong L, Gao D. 2016. Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmos. Environ. 140: 506-513. https://doi.org/10.1016/j.atmosenv.2016.06.034
  145. Sabariego S, Diaz DLGC, Alba F. 2000. The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). Int. J. Biometeorol. 44: 1-5. https://doi.org/10.1007/s004840050131
  146. Stennett PJ, Beggs PJ. 2004. Alternaria spores in the atmosphere of Sydney, Australia, and relationships with meteorological factors. Int. J. Biometeorol. 49: 98-105. https://doi.org/10.1007/s00484-004-0217-3
  147. Crandall SG, Gilbert GS. 2017. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation. Atmos. Environ. 162: 87-99. https://doi.org/10.1016/j.atmosenv.2017.05.018
  148. Harrison RM, Jones AM, Biggins PD, Pomeroy N, Cox CS, Kidd SP, et al. 2005. Climate factors influencing bacterial count in background air samples. Int. J. Biometeorol. 49: 167-178. https://doi.org/10.1007/s00484-004-0225-3
  149. Ma J, Sun J, Zhang T, Zeng J, Lin Q, Deng L, et al. 2011. Effect of partial solar eclipse on airborne culturable bacterial community in Urumqi. Acta Ecol. Sin. 31: 4671-4679.
  150. Mouli PC, Mohan SV, Reddy SJ. 2005. Assessment of microbial (bacteria) concentrations of ambient air at semi-arid urban region: influence of meteorological factors. Appl. Ecol. Environ. Res. 3: 139-149. https://doi.org/10.15666/aeer/0302_139149
  151. Raisi L, Lazaridis M, Katsivela E. 2010. Relationship between airborne microbial and particulate matter concentrations in the ambient air at a Mediterranean site. Global NEST J. 12: 84-91. https://doi.org/10.30955/gnj.000694
  152. Wu YH, Chan CC, Chew GL, Shih PW, Lee CT, Chao HJ. 2012. Meteorological factors and ambient bacterial levels in a subtropical urban environment. Int. J. Biometeorol. 56: 1001-1009. https://doi.org/10.1007/s00484-011-0514-6
  153. Murray BJ, Ross JF, Whale TF, Price HC, Atkinson JD, Umo NS, et al. 2015. The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci. Rep. 5: 8082. https://doi.org/10.1038/srep08082
  154. Schumacher CJ, Pohlker C, Aalto P, Hiltunen V, Petaja T, Kulmala M, et al. 2013. Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of finland and colorado. Atmos. Chem. Phys. 13: 11987-12001. https://doi.org/10.5194/acp-13-11987-2013
  155. Huffman JA, Prenni AJ, DeMott PJ, Pohlker C, Mason RH, Robinson NH, et al. 2013. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 13: 6151-6164. https://doi.org/10.5194/acp-13-6151-2013
  156. RodrIGuez-Rajo FJ, Iglesias I, Jato V. 2005. Variation assessment of airborne alternaria and Cladosporium spores at different bioclimatical conditions. Mycol. Res. 109: 497-507. https://doi.org/10.1017/S0953756204001777
  157. Elbert W, Taylor PE, Andreae MO, Poschl U. 2006. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions by Asco- and Basidiomycota. Atmos. Chem. Phys. Discuss. 6: 11317-11355. https://doi.org/10.5194/acpd-6-11317-2006
  158. Allitt U. 2000. Airborne fungal spores and the thunderstorm of 24 June 1994. Aerobiologia 16: 397. https://doi.org/10.1023/a:1026503500730
  159. Hai VD, Hoang SMT, Hung NTQ, Ky NM, Gwi-Nam B, Ki-hong P, et al. 2019. Characteristics of airborne bacteria and fungi in the atmosphere in Ho Chi Minh city, Vietnam-a case study over three years. Int. Biodeterior. Biodegrad. 145: 104819. https://doi.org/10.1016/j.ibiod.2019.104819
  160. Li M, Qi J, Zhang H, Huang S, Li L, Gao D. 2011. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Sci. Total Environ. 409: 3812-3819. https://doi.org/10.1016/j.scitotenv.2011.06.001
  161. Fan C, Li Y, Liu P, Mu F, Xie Z, Lu R, et al. 2019. Characteristic of airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China. Sci. Total Environ. 672: 834-845. https://doi.org/10.1016/j.scitotenv.2019.03.412
  162. Wang BB, Li YP, Xie ZS, Du SL, Zeng XL, Hou JL, et al. 2020. Characteristics of microbial activity in atmospheric aerosols and its relationship to chemical composition of PM2.5 in Xi'an, China. J. Aerosol Sci. 146: 105572. https://doi.org/10.1016/j.jaerosci.2020.105572
  163. Qin N, Liang P, Wu CY, Wang GQ, Xu Q, Xiong X, et al. 2020. Longitudinal survey of microbiome associated with particulate matter in a megacity. Genome Biol. 21: 55. https://doi.org/10.1186/s13059-020-01964-x
  164. Sun Y, Xu S, Zheng D, Li J, Tian H, Wang Y. 2018. Effects of haze pollution on microbial community changes and correlation with chemical components in atmospheric particulate matter. Sci. Total Environ. 637-638: 507-516. https://doi.org/10.1016/j.scitotenv.2018.04.203
  165. Li W, Yang J, Zhang D, Li B, Wang E, Yuan H. 2018. Concentration and community of airborne bacteria in response to cyclical haze events during the fall and winter in Beijing, China. Front. Microbiol. 9: 1741. https://doi.org/10.3389/fmicb.2018.01741
  166. Tan J, Duan J, Zhen N, He K, Hao J. 2016. Chemical characteristics and source of size ractionated atmospheric particle in haze episode in Beijing. Atmos. Res. 167: 24-33. https://doi.org/10.1016/j.atmosres.2015.06.015
  167. Bell ML, Dominici F, Ebisu K, Zeger SL, Samet JM. 2007. Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ. Health Perspect. 115: 989-995. https://doi.org/10.1289/ehp.9621
  168. Yan R, Yu S, Zhang Q, Li P, Wang S, Chen B, et al. 2015. A heavy haze episode in Beijing in February of 2014: Characteristics, origins and implications. Atmos. Pollut. Res. 6: 867-876. https://doi.org/10.5094/apr.2015.096
  169. Stillore AD, Trueblood JV, Grassian VH. 2016. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci. 7: 6604-6616. https://doi.org/10.1039/C6SC02353C