과제정보
We are thankful to Dr. Hina Ali for her assistance in Bioinformatics and the organization of manuscript and Mr. Shafiq for his helping in experimental lab work and all the authors for contribution in this manuscript. This study was partially supported by Sarhad University of Science and IT, Peshawar, Pakistan.
참고문헌
- Rasul F, Afroz A, Rashid U, Mehmood S, Sughra K, Zeeshan N. 2015. Screening and characterization of cellulase producing bacteria from soil and waste (molasses) of sugar industry. Int. J. Biosci. 6: 230-236. https://doi.org/10.12692/ijb/6.2.230-236
- Zhang YP. 2008. Reviving the carbohydrate economy via multiproduct lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 35: 367-375. https://doi.org/10.1007/s10295-007-0293-6
- Shaikh NM, Patel A, Mehta S, Patel N. 2013. Isolation and screening of cellulolytic bacteria inhabiting different environment and optimization of cellulase production. Univ. J. Environ. Res. Technol. 3: 39-49.
- Shenkani K, Sundara C. 2015. Isolation and screening of potential cellulolytic bacteria from coir retting effluent. Int. J. Multidiscip. Res. Dev. 2: 27-31.
- Garg R, Srivastava R, Brahma V, Verma L, Karthikeyan S, Sahni G. 2016. Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome. Sci. Rep. 6: 39634. https://doi.org/10.1038/srep39634
- Sadhu S, Saha P, Sen SK, Mayilraj S, Maiti TK. 2013. Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung. SpringerPlus 2: 10. https://doi.org/10.1186/2193-1801-2-10
- Behera BC, Mishra RR, Singh SK, Dutta SK, Thatoi H. 2016. Cellulase from Bacillus licheniformis and Brucella sp. isolated from mangrove soils of Mahanadi river delta, Odisha, India. Biocatal. Biotransformation 34: 44-53. https://doi.org/10.1080/10242422.2016.1212846
- Neethu T, Patel K, Susheel S, Ganesh SS. 2017. Assessment of manure quality prepared from different crop residues inoculated with cellulolytic and lignolytic bacterial isolates. Int. J. Curr. Microbiol. Appl. Sci. 6: 1653-1661.
- Raj J, Amulya H, Snehalatha V. 2017. Isolation, screening, and characterisation of cellulolytic bacteria, determination of their cellulolytic potential. Int. J. Adv. Res. Ideas Innov. Technol. 3: 215-220.
- Lane D. 1991. 16S/23S rRNA sequencing. Nucleic Acid Techniques Bacterial Systematics. 115-175.
- Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Irfan M, Safdar A, Syed Q, Nadeem M. 2012. Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turk. J. Biochem. 37: 287-293. https://doi.org/10.5505/tjb.2012.09709
- Karmakar M, Ray RR. 2011. Current trends in research and application of microbial cellulases. Res. J. Microbiol. 6: 41. https://doi.org/10.3923/jm.2011.41.53
- Kaur M, Arora S. 2012. Isolation and screening of cellulose degrading bacteria in kitchen waste and detecting their degrading potential. IOSR J. Mech. Civ. Eng. 1: 33-35. https://doi.org/10.9790/1684-0123335
- Islam M, Aktar M, Rahman M. 2014. Determination of alpha-amylase activity of Streptomyces spp isolated from Bangladeshi soils. Int. J. Interdiscip. Multidiscip. Studies 10: 167-170.
- Vimal J, Venu A, Joseph J. 2016. Isolation and identification of cellulose degrading bacteria and optimization of the cellulase production. Int. J. Res. Biosci. 5: 58-67.
- Sethi S, Datta A, Gupta BL, Gupta S. 2013. Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnol. 2013: 985685. https://doi.org/10.5402/2013/985685
- Roth A, Fischer M, Hamid ME, Michalke S, Ludwig W, Mauch H. 1998. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J. Clin. Microbiol. 36: 139-147. https://doi.org/10.1128/JCM.36.1.139-147.1998
- Shivaji S, Chaturvedi P, Suresh K, Reddy G, Dutt C, Wainwright M, et al. 2006. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int. J. Syst. Evol. Microbiol. 56: 1465-1473. https://doi.org/10.1099/ijs.0.64029-0
- Elbanna K, Elnaggar S, Bakeer A. 2014. Characterization of B. acillus altitudinis as a new causative agent of bacterial soft rot. J. Phytopathol. 162: 712-722. https://doi.org/10.1111/jph.12250
- Aygan A, Karcioglu L, Arikan B. 2011. Alkaline thermostable and halophilic endoglucanase from Bacillus licheniformis C108. Afr. J. Biotechnol. 10: 789-796.
- Maryam B, Qadir A, Zameer M, Ahmad SR, Nelofer R, Jamil N, et al. 2018. Production of cellulases by Bacillus cellulosilyticus using lignocellulosic material. Pol. J. Environ. Stud. 27: 1-9. https://doi.org/10.15244/pjoes/74130
- Immanuel G, Bhagavath C, Yappa RP. 2007. Production and partial purification of cellulase by Aspergillus niger and A. fumigatus fermented in coir waste and sawdust. Internet J. Microbiol. 3: 1-11.
- Sonia A, Dasan KP. 2013. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydr. Polym. 92: 668-674. https://doi.org/10.1016/j.carbpol.2012.09.015