과제정보
본 결과물은 과학기술정보통신부의 재원으로 한국연구재단의 세종과학펠로우쉽 사업(2022R1C1C2003649)의 연구비 지원을 받아 수행되었습니다.
참고문헌
- Baek, S. S., Pyo, J., Chun, J. A. 2020. Prediction of water level and water quality using a CNN-LSTM combined deep learning approach. Water, 12(12), 3399. https://doi.org/10.3390/w12123399
- Baek, S. S., Pyo, J., Kwon, Y., Chun, S. J., Baek, S., Ahn, C. Y., Cho, K. 2021. Deep learning for simulating harmful algal blooms using ocean numerical model. Frontiers in Marine Science, 1446.
- Baek, S. S., Kwon, Y. S., Pyo, J., Choi, J., Kim, Y. O., Cho, K. H. 2021. Identification of influencing factors of A. catenella bloom using machine learning and numerical simulation. Harmful Algae, 103, 102007. https://doi.org/10.1016/j.hal.2021.102007
- Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L. 2014. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected Crfs, arXiv preprint arXiv:1412.7062.
- Chollet, F. 2018. Deep learning with Python. Manning Publications Co, ISBN 9781617294433.
- Ioffe, S., Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, 448-456.
- Kayhanian, M., Fruchtman, B. D., Gulliver, J. S., Montanaro, C., Ranieri, E., Wuertz, S. 2012. Review of highway runoff characteristics: Comparative analysis and universal implications. Water research, 46(20), 6609-6624. https://doi.org/10.1016/j.watres.2012.07.026
- Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D. 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. 2014. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929-1958.
- LeCun, Y., Bengio, Y., and Hinton, G. 2015. Deep learning. Nature, 521, 436-444. https://doi.org/10.1038/nature14539
- Luong, M.-T., Pham, H., Manning, C. D. 2015. Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
- Park, Y., Lee, H. K., Shin, J. K., Chon, K., Kim, S., Cho, K. H., Baek, S. S. 2021. A machine learning approach for early warning of cyanobacterial bloom outbreaks in a freshwater reservoir. Journal of Environmental Management, 288, 112415.
- Pyo, J., Park, L. J., Pachepsky, Y., Baek, S. S., Kim, K., Cho, K. H. 2020. Using convolutional neural network for predicting cyanobacteria concentrations in river water. Water Research, 186, 116349. https://doi.org/10.1016/j.watres.2020.116349
- Pyo, J., Cho, K. H., Kim, K., Baek, S. S., Nam, G., Park, S. 2021. Cyanobacteria cell prediction using interpretable deep learning model with observed, numerical, and sensing data assemblage. Water Research, 203, 117483. https://doi.org/10.1016/j.watres.2021.117483
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A. 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. 2017. Attention is all you need, 5998-6008.