Budyko framework과 지면-대기 상호작용

  • 김대하 (전북대학교 토목환경자원에너지공학부)
  • Published : 2022.06.30

Abstract

Keywords

References

  1. Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. M., and Woods, R. A. (2017). A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resources Research, 53, 8475-8486. https://doi.org/10.1002/2017WR021593
  2. Brown, C., Ghile, Y., Laverty, M., and Li, K. (2012). Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector. Water Resources Research, 48, W09537.
  3. Budyko, M. I. (1958). The heat balance of the Earth's surface. National Weather Service, U.S. Department of Commerce.
  4. Budyko, M. I. (1974). Climate and life (508 p.). New York, NY, Academic Press.
  5. Fu, B. P. (1981). On the calculation of evaporation from land surface. Scientia Atmospherica Sinica, 1, 23-31.
  6. Gao, G., Fu, B., Wang, S., Liang, W., and Jiang, X. (2016). Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Science of the Total Environment, 557-558, 331-342. https://doi.org/10.1016/j.scitotenv.2016.03.019
  7. Greve, P., Gudmundsson, L., Orlowsky, B., and Seneviratne, S. I. (2016). A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation. Hydrology and Earth System Sciences, 20, 2195-2205. https://doi.org/10.5194/hess-20-2195-2016
  8. Kim, D., and Chun, J. A. (2021). Revisiting a two-parameter Budyko equation with the complementary evaporation principle for proper consideration of surface energy balance. Water Resources Research, 57, e2021WR030838.
  9. Oldekop, E. (1911). On evaporation from the surface of river basins. (In Russian: Ob Isparenii s Poverkhnosti Rechnykh Basseinov), (with abstract in German, pp. 201-209). Collection of the Works of Students of the Meteorological Observatory (p. 209). University of Tartu-Jurjew-Dorpat.
  10. Penman, H. L. (1948). Natural evaporation from open water, bares soil, and grass. Proceedings of the Royal Society, London, Ser. A, 193, 120-146.
  11. Schreiber, P. (1904). uber die Beziehungen zwischen dem Niederschlag und der Wasserfuhrung der Flusse in Mitteleuropa. Meteorologische Zeitschrift, 21, 441- 452.
  12. Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J. (2010). Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 125-161. https://doi.org/10.1016/j.earscirev.2010.02.004
  13. Wang, D., and Tang, Y. (2014). A one-parameter Budyko model for water balance captures emergent behavior in Darwinian hydrologic models. Geophysical Research Letters, 41, 4569-4577. https://doi.org/10.1002/2014GL060509
  14. Yang, H., Yang, D., Lei, Z., and Sun, F. (2008). New analytical derivation of the mean annual water balance equation. Water Resources Research, 44, W03410. https://doi.org/10.1029/2007WR006135
  15. Zhang, Y., Pena-Arancibia, J., McVicar, T., Chiew, F. H. S., Vaze, J., Liu, C. et al. (2016). Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, 6, 19124. https://doi.org/10.1038/srep19124
  16. Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann, S. et al. (2019). Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proceedings of the National Academy of Sciences of the United States of America, 116, 18848-18853. https://doi.org/10.1073/pnas.1904955116