References
- Allamano, P., Croci, A., and Laio, F. (2015). Toward the camera rain gauge. Water Resources Research, Vol. 51, No. 3, pp. 1744-1757. https://doi.org/10.1002/2014WR016298
- Atlas, D., Srivastava, R. C., and Sekhon, R. S. (1973). Doppler radar characteristics of precipitation at vertical incidence. Reviews of Geophysics, Vol. 11, No. 1, pp. 1-35. https://doi.org/10.1029/RG011i001p00001
- Avanzato, R., and Beritelli, F. (2020). A cnn-baseddifferential image processing approach for rainfall classification. Advancesin Science, Technology and Engineering Systems Journal, Vol. 5, No. 4, pp. 438-444. https://doi.org/10.25046/aj050452
- Bouwmans, T., El Baf, F., and Vachon, B. (2010). Statistical background modeling for foreground detection: A survey. In Handbook of pattern recognition and computer vision (pp. 181-199).
- Duthon, P., Bernardin, F., Chausse, F., and Colomb, M. (2018). Benchmark for the robustness of image features in rainy conditions. Machine Vision and Applications, Vol. 29, No. 5, pp. 915-927. https://doi.org/10.1007/s00138-018-0945-8
- Famiglietti, J. S., Cazenave, A., Eicker, A., Reager, J. T., Rodell, M., and Velicogna, I. (2015). Satellites provide the big picture. Science, Vol. 349, No. 6249, pp. 684-685.
- Garg, K., and Nayar, S. K. (2005). When does a camera see rain?. In Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1 (Vol. 2, pp. 1067-1074). IEEE.
- Garg, K., and Nayar, S. K. (2007). Vision and rain. International Journal of Computer Vision, Vol. 75, No. 1, pp. 3-27. https://doi.org/10.1007/s11263-006-0028-6
- Guo, B., Han, Q., Chen, H., Shangguan, L., Zhou, Z., and Yu, Z. (2017). The emergence of visual crowdsensing: Challenges and opportunities. IEEE Communications Surveys & Tutorials, Vol. 19, No. 4, pp. 2526-2543. https://doi.org/10.1109/COMST.2017.2726686
- Guo, H., Huang, H., Sun, Y. E., Zhang, Y., Chen, S., and Huang, L. (2019). Chaac: Real-time and fine-grained rain detection and measurement using smartphones. IEEE Internet of Things Journal, Vol. 6, No. 1, pp. 997-1009. https://doi.org/10.1109/jiot.2018.2866690
- Haberlandt, U., and Sester, M. (2010). Areal rainfall estimation using moving cars as rain gauges-A modelling study. Hydrology and Earth System Sciences, Vol. 14, No. 7, pp. 1139-1151. https://doi.org/10.5194/hess-14-1139-2010
- Hua, X. S. (2018). The city brain: Towards real-time search for the real-world. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (pp. 1343-1344). New York: ACM Press.
- Jiang, S., Babovic, V., Zheng, Y., and Xiong, J. (2019). Advancing opportunistic sensing in hydrology: A novel approach to measuring rainfall with ordinary surveillance cameras. Water Resources Research, Vol. 55, No. 4, pp. 3004-3027. https://doi.org/10.1029/2018WR024480
- Jiang, T. X., Huang, T. Z., Zhao, X. L., Deng, L. J., and Wang, Y. (2018). Fastderain: A novel video rain streak removal method using directional gradient priors. IEEE Transactions on Image Processing, Vol. 28, No. 4, pp. 2089-2102. https://doi.org/10.1109/TIP.2018.2880512
- Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., and Kirschbaum, D. B. (2017). So, how much of the Earth's surface is covered by rain gauges?. Bulletin of the American Meteorological Society, Vol. 98, No. 1, pp. 69-78. https://doi.org/10.1175/BAMS-D-14-00283.1
- Kim, J. H., Sim, J. Y., and Kim, C. S. (2015). Video deraining and desnowing using temporal correlation and low-rank matrix completion. IEEE Transactions on Image Processing, Vol. 24, No. 9, pp. 2658-2670. https://doi.org/10.1109/TIP.2015.2428933
- Loffler-Mang, M., and Joss, J. (2000). An optical disdrometer for measuring size and velocity of hydrometeors. Journal of Atmospheric and Oceanic Technology, Vol. 17, No. 2, pp. 130-139. https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
- McCabe, M. F., Rodell, M., Alsdorf, D. E., Miralles, D. G., Uijlenhoet, R., Wagner, W., ... and Wood, E. F. (2017). The future of Earth observation in hydrology. Hydrology and Earth System Sciences, Vol. 21, No. 7, pp. 3879-3914. https://doi.org/10.5194/hess-21-3879-2017
- Morse, J. M. (2005). Evolving trends in qualitative research: Advances in mixed.method design. Qualitative Health Research, Vol. 15, No. 5, pp. 583.585. https://doi.org/10.1177/1049732305275169
- Nottle, A., Harborne, D., Braines, D., Alzantot, M., Quintana-Amate, S., Tomsett, R., ... and Preece, A. (2017). Distributed opportunistic sensing and fusion for traffic congestion detection. In 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1-6). IEEE.
- Overeem, A., R. Robinson, J. C., Leijnse, H., Steeneveld, G. J., P. Horn, B. K., and Uijlenhoet, R. (2013). Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophysical Research Letters, Vol. 40, No. 15, pp. 4081-4085. https://doi.org/10.1002/grl.50786
- Overeem, A., Leijnse, H., and Uijlenhoet, R. (2016). Two and a half years of country‐wide rainfall maps using radio links from commercial cellular telecommunication networks. Water Resources Research, Vol. 52, No. 10, pp. 8039-8065. https://doi.org/10.1002/2016WR019412
- Qasim, S., Khan, K. N., Yu, M., and Khan, M. S. (2021). Performance Evaluation of Background Subtraction Techniques for Video Frames. In 2021 International Conference on Artificial Intelligence (ICAI) (pp. 102-107). IEEE.
- Rabiei, E., Haberlandt, U., Sester, M., and Fitzner, D. (2013). Rainfall estimation using moving cars as rain gauges–laboratory experiments. Hydrology and Earth System Sciences, Vol. 17, No. 11, pp. 4701-4712. https://doi.org/10.5194/hess-17-4701-2013
- Rabiei, E., Haberlandt, U., Sester, M., Fitzner, D., and Wallner, M. (2016). Areal rainfall estimation using moving cars-Computer experi- ments including hydrological modeling. Hydrology and Earth System Sciences, Vol. 20, No. 9, pp. 3907-3922. https://doi.org/10.5194/hess-20-3907-2016
- Santhaseelan, V., and Asari, V. K. (2015). Utilizing local phase information to remove rain from video. International Journal of Computer Vision, Vol. 112, No. 1, pp. 71-89. https://doi.org/10.1007/s11263-014-0759-8
- Tripathi, A. K., and Mukhopadhyay, S. (2014). Removal of rain from videos: A review. Signal, Image and Video Processing, Vol. 8, No. 8, pp. 1421-1430. https://doi.org/10.1007/s11760-012-0373-6
- Wang, X., Wang, M., Liu, X., Glade, T., Chen, M., Xie, Y., ... and Chen, Y. (2022). Rainfall observation using surveillance audio. Applied Acoustics, Vol. 186, 108478. https://doi.org/10.1016/j.apacoust.2021.108478
- Yang, P., and Ng, T. L. (2017). Gauging through the crowd: A crowd‐sourcing approach to urban rainfall measurement and storm water modeling implications. Water Resources Research, Vol. 53, No. 11, pp. 9462-9478. https://doi.org/10.1002/2017WR020682
- Zen, R., Arsa, D. M. S., Zhang, R., Er, N. A. S., and Bressan, S. (2019). Rainfall estimation from traffic cameras. In International Conference on Database and Expert Systems Applications (pp. 18-32). Springer, Cham.
- Zivkovic, Z., and Van Der Heijden, F. (2006). Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, Vol. 27, No. 7, pp. 773-780. https://doi.org/10.1016/j.patrec.2005.11.005