수문모형 검보정을 위한 새로운 최적화 목적함수의 소개 및 이론적 특성 고찰

  • 최현일 (영남대학교 건설시스템공학과)
  • Published : 2022.06.30

Abstract

Keywords

References

  1. Bastidas, L., Gupta, H.V., Sorooshian, S., Shuttleworth, W.J., Yang, Z., 1999. Sensitivity analysis of a land surface scheme using multicriteria methods. J. Geophys. Res. Atmos. 104(D16), 19481-19490. https://doi.org/10.1029/1999JD900155
  2. Bastidas, L.A., Hogue, T.S., Sorooshian, S., Gupta, H.V., Shuttleworth, W.J., 2006. Parameter sensitivity analysis for different complexity land surface models using multicriteria methods. J. Geophys. Res. Atmos. 111(D20). DOI:https://doi.org/10.1029/2005JD006377.
  3. Beven, K., 2001. How far can we go in distributed hydrological modelling? Hydrol. Earth Syst. Sci. 5(1), 1-12. https://doi.org/10.5194/hess-5-1-2001
  4. Choi, H.I., 2022. Comment on Liu (2020): A rational performance criterion for hydrological model. J. Hydrol. 606, 126927. https://doi.org/10.1016/j.jhydrol.2021.126927
  5. Gupta, H.V., Sorooshian, S., Yapo, P.O., 1998. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res. 34(4), 751-763. https://doi.org/10.1029/97WR03495
  6. Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003
  7. Lee, J.S., Choi, H.I., 2022. A rebalanced performance criterion for hydrological model calibration. J. Hydrol. 606, 127372. https://doi.org/10.1016/j.jhydrol.2021.127372
  8. Liu, D., 2020. A rational performance criterion for hydrological model. J. Hydrol. 590, 125488. DOI:https://doi.org/10.1016/j.jhydrol.2020.125488.
  9. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50(3), 885-900. DOI:https://doi.org/10.13031/2013.23153.
  10. Murphy, A.H., 1988. Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Weather Rev. 116(12), 2417-2424. https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
  11. Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I - A discussion of principles. J. Hydrol. 10(3): 282-290. DOI:https://doi.org/10.1016/0022-1694(70)90255-6.
  12. Neelin, J.D., Bracco, A., Luo, H., McWilliams, J.C., Meyerson, J.E., 2010. Considerations for parameter optimization and sensitivity in climate models. Proc. Natl. Acad. Sci. 107(50), 21349-21354. DOI:10.1073/pnas.1015473107.
  13. Pineiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M., 2008. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol. Modell. 216(3), 316-322. DOI:https://doi.org/10.1016/j.ecolmodel.2008.05.006.
  14. van Werkhoven, K., Wagener, T., Reed, P., Tang, Y., 2009. Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Adv. Water Resour. 32(8), 1154-1169. DOI:https://doi.org/10.1016/j.advwatres.2009.03.002.
  15. Weglarczyk, S., 1998. The interdependence and applicability of some statistical quality measures for hydrological models. J. Hydrol. 206(1), 98-103. DOI:https://doi.org/10.1016/S0022-1694(98)00094-8.