DOI QR코드

DOI QR Code

Estimation of various amounts of kaolinite on concrete alkali-silica reactions using different machine learning methods

  • 투고 : 2021.07.19
  • 심사 : 2022.04.12
  • 발행 : 2022.07.10

초록

In this paper, the impact of a vernacular pozzolanic kaolinite mine on concrete alkali-silica reaction and strength has been evaluated. For making the samples, kaolinite powder with various levels has been used in the quality specification test of aggregates based on the ASTM C1260 standard in order to investigate the effect of kaolinite particles on reducing the reaction of the mortar bars. The compressive strength, X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) experiments have been performed on concrete specimens. The obtained results show that addition of kaolinite powder to concrete will cause a pozzolanic reaction and decrease the permeability of concrete samples comparing to the reference concrete specimen. Further, various machine learning methods have been used to predict ASR-induced expansion per different amounts of kaolinite. In the process of modeling methods, optimal method is considered to have the lowest mean square error (MSE) simultaneous to having the highest correlation coefficient (R). Therefore, to evaluate the efficiency of the proposed model, the results of the support vector machine (SVM) method were compared with the decision tree method, regression analysis and neural network algorithm. The results of comparison of forecasting tools showed that support vector machines have outperformed the results of other methods. Therefore, the support vector machine method can be mentioned as an effective approach to predict ASR-induced expansion.

키워드

참고문헌

  1. Aiyer, B.G., Kim, D., Karingattikkal, N., Samui, P. and Rao, P.R. (2014), "Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine", KSCE J. Civil Eng., 18(6), 1753-1758. https://doi.org/10.1007/s12205-014-0524-0.
  2. Akande, K.O., Owolabi, T.O., Twaha, S. and Olatunji, S.O. (2014), "Performance comparison of SVM and ANN in predicting compressive strength of concrete", IOSR J. Comput. Eng., 16(5), 88-94. https://doi.org/10.9790/0661-16518894.
  3. Akcay, B., Sengul, C. and ali Tasdemir, M. (2016), "Fracture behavior and pore structure of concrete with metakaolin", Adv. Concrete Constr., 4(2), 71. https://doi.org/10.12989/acc.2016.4.2.071.
  4. Avet, F. and Scrivener, K. (2018), "Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3)", Cement Concrete Res., 107, 124-135. https://doi.org/10.1016/j.cemconres.2018.02.016.
  5. Bayrak, O. (2020), "Alkali-Silica reaction: Testing demonstrates unexpected capacity", ASPIRE Fall 2020, 44-45.
  6. Beglarigale, A. and Yazici, H. (2014), "Mitigation of detrimental effects of alkali-silica reaction in cement- based composites by combination of steel microfibers and ground-granulated blast-furnace slag", J. Mater. Civil Eng., 26(12), 401-409. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001005.
  7. Boddy, A.M., Hooton, R.D. and Thomas, M.D.A. (2003), "The effect of the silica content of silica fume on its ability to control alkali-silica reaction", Cement Concrete Res., 33(8), 1263-1268. https://doi.org/10.1016/S0008-8846(03)00058-9.
  8. C. ASTM, 1260 (2005), Standard Test Method for Potential Alkali Reactivity of Aggregate (Mortar-Bar Method).
  9. Chatterji, S., Thaulow, N. and Jensen, A.D. (1987), "Studies of alkali-silica reaction. Part 4. Effect of different alkali salt solutions on expansion", Cement Concrete Res., 17(5), 777-783. https://doi.org/10.1016/0008-8846(87)90040-8.
  10. Davoudi, H. (2017), "Evaluation of the superplasticizer effect on the concrete compressive strength using the tree-classification decision algorithm", Civil Eng. Urban Plan., 4(1), 25-32. https://doi.org/10.5121/civej.2017.4103.
  11. DeMerchant, D.P., Fournier, B. and Strang, F. (2000), "Alkali-aggregate research in New Brunswick", Can. J. Civil Eng., 27(2), 212-225. https://doi.org/10.1139/l99-077.
  12. de Sensale, G.R. (2006), "Strength development of concrete with rice-husk ash", Cement Concrete Compos., 28(2), 158-160. https://doi.org/10.1016/j.cemconcomp.2005.09.005.
  13. Dibike, Y.B., Velickov, S., Solomatine, D. and Abbott, M.B. (2001), "Model induction with support vector machines: Introduction and applications", J. Comput. Civil Eng., 15(3), 208-216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208).
  14. Erdal, H.I. (2013), "Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction", Eng. Appl. Artif. Intel., 26(7), 1689-1697. https://doi.org/10.1016/j.engappai.2013.03.014.
  15. Fadaee, M., Mirhosseini, R., Tabatabaei, R. and Fadaee, M.J. (2015), "Investigation on using copper slag as part of cementitious materials in self compacting concrete", Asian J. Civil Eng., 16(3), 368-381.
  16. Feng, X., Thomas, M.D.A., Bremner, T.W., Balcom, B.J. and Folliard, K.J. (2005), "Studies on lithium salts to mitigate ASR-induced expansion in new concrete: a critical review", Cement Concrete Res., 35(9), 1789-1796. http://doi.org/10.1016/j.cemconres.2004.10.013.
  17. Ge, L., Wang, C.C., Hung, C.W., Liao, W.C. and Zhao, H. (2018), "Assessment of strength development of slag cement stabilized kaolinite", Constr. Build. Mater., 184, 492-501. https://doi.org/10.1016/j.conbuildmat.2018.06.236.
  18. Ghanizadeh, A.R., Abbaslou, H., Amlashi, A.T. and Alidoust, P. (2019), "Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine", Front. Struct. Civil Eng., 13(1), 215-239. https://doi.org/10.1007/s11709-018-0489-z.
  19. Gudmundsson, G. and Olafsson, H. (1999), "Alkali-silica reactions and silica fume: 20 years of experience in Iceland", Cement Concrete Res., 29(8), 1289-1297. https://doi.org/10.1016/S0008-8846(98)00239-7.
  20. Gupta, S.M. (2007), "Support vector machines based modelling of concrete strength", World Acad. Sci., Eng. Technol., 36, 305-311. https://doi.org/10.5539/apr.v6n5p122.
  21. Hariri-Ardebili, M., Saouma, V. and Le Pape Y. (2015), "Effect of alkali-silica reaction on shear strength of reinforced concrete structural members", Oak Ridge National Lab. (ORNL), Oak Ridge, TN, USA.
  22. Hasparyk, N.P., Monteiro, P.J.M. and Carasek, H. (2000), "Effect of silica fume and rice husk ash on alkali-silica reaction", Mater. J., 97(4), 486-492. https://doi.org/10.14359/7416.
  23. Hayes, N.W., Giorla, A.B., Trent, W., Cong, D., Le Pape, Y. and Ma, Z.J. (2020), "Effect of alkali-silica reaction on the fracture properties of confined concrete", Constr. Build. Mater., 238, 11741. https://doi.org/10.1016/j.conbuildmat.2019.117641.
  24. Hayman, S., Thomas, M., Beaman, N. and Gilks, P. (2010), "Selection of an effective ASR-prevention strategy for use with a highly reactive aggregate for the reconstruction of concrete structures at Mactaquac generating station", Cement Concrete Res., 40(4), 605-610. https://doi.org/10.1016/j.cemconres.2009.08.015.
  25. Ichikawa, T. (2009), "Alkali-silica reaction, pessimum effects and pozzolanic effect", Cement Concrete Res., 39(8), 716-726. https://doi.org/10.1016/j.cemconres.2009.06.004.
  26. Idorn, G.M. (1997), Concrete Progress: From Antiquity to Third Millenium, Thomas Telford.
  27. Ilic, B., Mitrovic, A., Milicic, L. and Zdujic, M. (2018), "Compressive strength and microstructure of ordinary cured and autoclaved cement-based composites with mechanically activated kaolins", Constr. Build. Mater., 178, 92-101. https://doi.org/10.1016/j.conbuildmat.2018.05.144.
  28. Jahandari, S., Mohammadi, M., Rahmani, A., Abolhasani, M., Miraki, H., Mohammadifar, L., ... & Rashidi, M. (2021). "Mechanical properties of recycled aggregate concretes containing silica fume and steel fibres", Mater., 14(22), 7065. https://doi.org/10.3390/ma14227065.
  29. Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Constr. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478.
  30. Karaman, K. and Bakhytzhan, A. (2020), "Effect of rock mineralogy on mortar expansion", Geomech. Eng., 20(3), 233-241. https://doi.org/10.12989/gae.2020.20.3.233.
  31. Lenka, S. and Panda, K.C. (2017), "Effect of metakaolin on the properties of conventional and self compacting concrete", Adv. Concrete Constr., 5(1), 31. http://doi.org/10.12989/acc.2017.5.1.031.
  32. Ling, H., Qian, C., Kang, W., Liang, C. and Chen, H. (2019), "Combination of support vector machine and K-fold cross validation to predict compressive strength of concrete in marine environment", Constr. Build. Mater., 206, 355-363. https://doi.org/10.1016/j.conbuildmat.2019.02.071.
  33. Li, Z., Thomas, R.J. and Peethamparan, S. (2019), "Alkali-silica reactivity of alkali-activated concrete subjected to ASTM C 1293 and 1567 alkali-silica reactivity tests", Cement Concrete Res., 123, 105796. https://doi.org/10.1016/j.cemconres.2019.105796.
  34. Mehdizadeh, B., Jahandari, S., Vessalas, K., Miraki, H., Rasekh, H. and Samali, B. (2021), "Fresh, mechanical, and durability properties of self-compacting mortar incorporating alumina nanoparticles and rice husk ash", Mater., 14(22), 6778. https://doi.org/10.3390/ma14226778.
  35. Miraki, H., Shariatmadari, N., Ghadir, P., Jahandari, S., Tao, Z. and Siddique, R. (2022), "Clayey soil stabilization using alkali-activated volcanic ash and slag", J. Rock Mech. Geotech. Eng., 14(2), 576-591. https://doi.org/10.1016/j.jrmge.2021.08.012.
  36. Mohammadifar, L., Miraki, H., Rahmani, A., Jahandari, S., Mehdizadeh, B., Rasekh, H., ... & Samali, B. (2022), "Properties of Lime-cement concrete containing various amounts of waste tire powder under different ground moisture conditions", Polym., 14(3), 482. https://doi.org/10.3390/polym14030482.
  37. Naderpour, H., Noormohammadi, E. and Fakharian, P. (2017), "Prediction of punching shear capacity of RC slabs using support vector machine", Concrete Res., 10(2), 95-107. https://doi.org/10.22124/JCR.2017.2417.
  38. Olson, D.L. and Delen, D. (2008), Advanced Data Mining Techniques, Springer Science & Business Media.
  39. Pekmezci, B.Y. and Akyuz, S. (2004), "Optimum usage of a natural pozzolan for the maximum compressive strength of concrete", Cement Concrete Res., 34(12), 2175-2179. https://doi.org/10.1016/j.cemconres.2004.02.008.
  40. Ramezanianpour, A.A. and Davapanah, A. (2002), "Concrete properties estimation and mix design optimization based on neural networks", Proceedings of the World Conference on Concrete Materials and Structures (WCCNS), Kualalumpur, Malaysia.
  41. Saboya, F. Jr., Xavier, G.C. and Alexandre, J. (2007), "The use of the powder marble by-product to enhance the properties of brick ceramic", Constr. Build. Mater., 21(10), 1950-1960. https://doi.org/10.1016/j.conbuildmat.2006.05.029.
  42. Samui, P. (2008), "Support vector machine applied to settlement of shallow foundations on cohesionless soils", Comput. Geotech., 35(3), 419-427. https://doi.org/10.1016/j.compgeo.2007.06.014.
  43. Shafaatian, S.M.H., Akhavan, A., Maraghechi, H. and Rajabipour, F. (2013), "How does fly ash mitigate alkali-silica reaction (ASR) in accelerated mortar bar test (ASTM C1567)?", Cement Concrete Compos., 37, 143-153. https://doi.org/10.1016/j.cemconcomp.2012.11.004.
  44. Shawe-Taylor, J. and Cristianini, N. (2004), Kernel Methods for Pattern Analysis, Cambridge University Press.
  45. Sims, I. and Nixon, P.J. (2006), "Assessment of aggregates for alkali-aggregate reactivity potential: RILEM international recommendations", Marc-Andre Berube Symposium on Alkali-Aggregate Reactivity in Concrete, Canada, 71-91.
  46. Sun, J., Wang, Y., Liu, S., Dehghani, A., Xiang, X., Wei, J. and Wang, X. (2021), "Mechanical, chemical and hydrothermal activation for waste glass reinforced cement", Constr. Build. Mater., 301, 124361. https://doi.org/10.1016/j.conbuildmat.2021.124361.
  47. Swamy, R.N. (1991), The Alkali-Silica Reaction in Concrete, CRC Press.
  48. Swamy, R.N. and Al-Asali, M.M. (1988), "Engineering properties of concrete affected by alkali-silica reaction", Mater. J., 85(5), 367-374. https://doi.org/10.14359/2288.
  49. Tabatabaei, R., Sanjari, H.R. and Shamsadini, M. (2014), "The use of artificial neural networks in predicting ASR of concrete containing nano-silica", Comput. Concrete, 13(6), 739. http://doi.org/10.12989/cac.2014.13.6.739.
  50. Thomas, M. (2011) "The effect of supplementary cementing materials on alkali-silica reaction: A review", Cement Concrete Res., 41(12), 1224-1231. https://doi.org/10.1016/j.cemconres.2010.11.003.
  51. Torkan, M. and Naderi Dehkordi, M. (2018), "Evelopment of ANFIS-PSO, SVR-PSO, and ANN-PSO hybrid intelligent models for predicting the compressive strenrtg of concrete", Iran Univ. Sci. Technol., 8(4), 547-563. https://doi.org/10.3390/math7100965.
  52. Vapnik, V. (2013), The Nature of Statistical Learning Theory, Springer Science & Business Media.
  53. Vardhan, K., Goyal, S., Siddique, R. and Singh, M. (2015), "Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement", Constr. Build. Mater., 96, 615-621. https://doi.org/10.1016/j.conbuildmat.2015.08.071.
  54. Yan, K., Xu, H., Shen, G. and Liu, P. (2013), "Prediction of splitting tensile strength from cylinder compressive strength of concrete by support vector machine", Adv. Mater. Sci. Eng., 2013, Article ID 597257. https://doi.org/10.1155/2013/597257.
  55. Yazdi, J.S., Kalantary, F. and Yazdi, H.S. (2013), "Prediction of elastic modulus of concrete using support vector committee method", J. Mater. Civil Eng., 25(1), 9-20. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000507.
  56. Zhang, G., Chen, C., Li, K., Xiao, F., Sun, J., Wang, Y. and Wang, X. (2022), "Multi-objective optimisation design for GFRP tendon reinforced cemented soil", Constr. Build. Mater., 320, 126297. https://doi.org/10.1016/j.conbuildmat.2021.126297.
  57. Zhang, G., Chen, C., Sun, J., Li, K., Xiao, F., Wang, Y., ... & Wang, X. (2022), "Mixture optimisation for cement-soil mixtures with embedded GFRP tendons", J. Mater. Res. Technol., 18, 611-628. https://doi.org/10.1016/j.jmrt.2022.02.076.