참고문헌
- Aiyer, B.G., Kim, D., Karingattikkal, N., Samui, P. and Rao, P.R. (2014), "Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine", KSCE J. Civil Eng., 18(6), 1753-1758. https://doi.org/10.1007/s12205-014-0524-0.
- Akande, K.O., Owolabi, T.O., Twaha, S. and Olatunji, S.O. (2014), "Performance comparison of SVM and ANN in predicting compressive strength of concrete", IOSR J. Comput. Eng., 16(5), 88-94. https://doi.org/10.9790/0661-16518894.
- Akcay, B., Sengul, C. and ali Tasdemir, M. (2016), "Fracture behavior and pore structure of concrete with metakaolin", Adv. Concrete Constr., 4(2), 71. https://doi.org/10.12989/acc.2016.4.2.071.
- Avet, F. and Scrivener, K. (2018), "Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3)", Cement Concrete Res., 107, 124-135. https://doi.org/10.1016/j.cemconres.2018.02.016.
- Bayrak, O. (2020), "Alkali-Silica reaction: Testing demonstrates unexpected capacity", ASPIRE Fall 2020, 44-45.
- Beglarigale, A. and Yazici, H. (2014), "Mitigation of detrimental effects of alkali-silica reaction in cement- based composites by combination of steel microfibers and ground-granulated blast-furnace slag", J. Mater. Civil Eng., 26(12), 401-409. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001005.
- Boddy, A.M., Hooton, R.D. and Thomas, M.D.A. (2003), "The effect of the silica content of silica fume on its ability to control alkali-silica reaction", Cement Concrete Res., 33(8), 1263-1268. https://doi.org/10.1016/S0008-8846(03)00058-9.
- C. ASTM, 1260 (2005), Standard Test Method for Potential Alkali Reactivity of Aggregate (Mortar-Bar Method).
- Chatterji, S., Thaulow, N. and Jensen, A.D. (1987), "Studies of alkali-silica reaction. Part 4. Effect of different alkali salt solutions on expansion", Cement Concrete Res., 17(5), 777-783. https://doi.org/10.1016/0008-8846(87)90040-8.
- Davoudi, H. (2017), "Evaluation of the superplasticizer effect on the concrete compressive strength using the tree-classification decision algorithm", Civil Eng. Urban Plan., 4(1), 25-32. https://doi.org/10.5121/civej.2017.4103.
- DeMerchant, D.P., Fournier, B. and Strang, F. (2000), "Alkali-aggregate research in New Brunswick", Can. J. Civil Eng., 27(2), 212-225. https://doi.org/10.1139/l99-077.
- de Sensale, G.R. (2006), "Strength development of concrete with rice-husk ash", Cement Concrete Compos., 28(2), 158-160. https://doi.org/10.1016/j.cemconcomp.2005.09.005.
- Dibike, Y.B., Velickov, S., Solomatine, D. and Abbott, M.B. (2001), "Model induction with support vector machines: Introduction and applications", J. Comput. Civil Eng., 15(3), 208-216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208).
- Erdal, H.I. (2013), "Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction", Eng. Appl. Artif. Intel., 26(7), 1689-1697. https://doi.org/10.1016/j.engappai.2013.03.014.
- Fadaee, M., Mirhosseini, R., Tabatabaei, R. and Fadaee, M.J. (2015), "Investigation on using copper slag as part of cementitious materials in self compacting concrete", Asian J. Civil Eng., 16(3), 368-381.
- Feng, X., Thomas, M.D.A., Bremner, T.W., Balcom, B.J. and Folliard, K.J. (2005), "Studies on lithium salts to mitigate ASR-induced expansion in new concrete: a critical review", Cement Concrete Res., 35(9), 1789-1796. http://doi.org/10.1016/j.cemconres.2004.10.013.
- Ge, L., Wang, C.C., Hung, C.W., Liao, W.C. and Zhao, H. (2018), "Assessment of strength development of slag cement stabilized kaolinite", Constr. Build. Mater., 184, 492-501. https://doi.org/10.1016/j.conbuildmat.2018.06.236.
- Ghanizadeh, A.R., Abbaslou, H., Amlashi, A.T. and Alidoust, P. (2019), "Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine", Front. Struct. Civil Eng., 13(1), 215-239. https://doi.org/10.1007/s11709-018-0489-z.
- Gudmundsson, G. and Olafsson, H. (1999), "Alkali-silica reactions and silica fume: 20 years of experience in Iceland", Cement Concrete Res., 29(8), 1289-1297. https://doi.org/10.1016/S0008-8846(98)00239-7.
- Gupta, S.M. (2007), "Support vector machines based modelling of concrete strength", World Acad. Sci., Eng. Technol., 36, 305-311. https://doi.org/10.5539/apr.v6n5p122.
- Hariri-Ardebili, M., Saouma, V. and Le Pape Y. (2015), "Effect of alkali-silica reaction on shear strength of reinforced concrete structural members", Oak Ridge National Lab. (ORNL), Oak Ridge, TN, USA.
- Hasparyk, N.P., Monteiro, P.J.M. and Carasek, H. (2000), "Effect of silica fume and rice husk ash on alkali-silica reaction", Mater. J., 97(4), 486-492. https://doi.org/10.14359/7416.
- Hayes, N.W., Giorla, A.B., Trent, W., Cong, D., Le Pape, Y. and Ma, Z.J. (2020), "Effect of alkali-silica reaction on the fracture properties of confined concrete", Constr. Build. Mater., 238, 11741. https://doi.org/10.1016/j.conbuildmat.2019.117641.
- Hayman, S., Thomas, M., Beaman, N. and Gilks, P. (2010), "Selection of an effective ASR-prevention strategy for use with a highly reactive aggregate for the reconstruction of concrete structures at Mactaquac generating station", Cement Concrete Res., 40(4), 605-610. https://doi.org/10.1016/j.cemconres.2009.08.015.
- Ichikawa, T. (2009), "Alkali-silica reaction, pessimum effects and pozzolanic effect", Cement Concrete Res., 39(8), 716-726. https://doi.org/10.1016/j.cemconres.2009.06.004.
- Idorn, G.M. (1997), Concrete Progress: From Antiquity to Third Millenium, Thomas Telford.
- Ilic, B., Mitrovic, A., Milicic, L. and Zdujic, M. (2018), "Compressive strength and microstructure of ordinary cured and autoclaved cement-based composites with mechanically activated kaolins", Constr. Build. Mater., 178, 92-101. https://doi.org/10.1016/j.conbuildmat.2018.05.144.
- Jahandari, S., Mohammadi, M., Rahmani, A., Abolhasani, M., Miraki, H., Mohammadifar, L., ... & Rashidi, M. (2021). "Mechanical properties of recycled aggregate concretes containing silica fume and steel fibres", Mater., 14(22), 7065. https://doi.org/10.3390/ma14227065.
- Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Constr. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478.
- Karaman, K. and Bakhytzhan, A. (2020), "Effect of rock mineralogy on mortar expansion", Geomech. Eng., 20(3), 233-241. https://doi.org/10.12989/gae.2020.20.3.233.
- Lenka, S. and Panda, K.C. (2017), "Effect of metakaolin on the properties of conventional and self compacting concrete", Adv. Concrete Constr., 5(1), 31. http://doi.org/10.12989/acc.2017.5.1.031.
- Ling, H., Qian, C., Kang, W., Liang, C. and Chen, H. (2019), "Combination of support vector machine and K-fold cross validation to predict compressive strength of concrete in marine environment", Constr. Build. Mater., 206, 355-363. https://doi.org/10.1016/j.conbuildmat.2019.02.071.
- Li, Z., Thomas, R.J. and Peethamparan, S. (2019), "Alkali-silica reactivity of alkali-activated concrete subjected to ASTM C 1293 and 1567 alkali-silica reactivity tests", Cement Concrete Res., 123, 105796. https://doi.org/10.1016/j.cemconres.2019.105796.
- Mehdizadeh, B., Jahandari, S., Vessalas, K., Miraki, H., Rasekh, H. and Samali, B. (2021), "Fresh, mechanical, and durability properties of self-compacting mortar incorporating alumina nanoparticles and rice husk ash", Mater., 14(22), 6778. https://doi.org/10.3390/ma14226778.
- Miraki, H., Shariatmadari, N., Ghadir, P., Jahandari, S., Tao, Z. and Siddique, R. (2022), "Clayey soil stabilization using alkali-activated volcanic ash and slag", J. Rock Mech. Geotech. Eng., 14(2), 576-591. https://doi.org/10.1016/j.jrmge.2021.08.012.
- Mohammadifar, L., Miraki, H., Rahmani, A., Jahandari, S., Mehdizadeh, B., Rasekh, H., ... & Samali, B. (2022), "Properties of Lime-cement concrete containing various amounts of waste tire powder under different ground moisture conditions", Polym., 14(3), 482. https://doi.org/10.3390/polym14030482.
- Naderpour, H., Noormohammadi, E. and Fakharian, P. (2017), "Prediction of punching shear capacity of RC slabs using support vector machine", Concrete Res., 10(2), 95-107. https://doi.org/10.22124/JCR.2017.2417.
- Olson, D.L. and Delen, D. (2008), Advanced Data Mining Techniques, Springer Science & Business Media.
- Pekmezci, B.Y. and Akyuz, S. (2004), "Optimum usage of a natural pozzolan for the maximum compressive strength of concrete", Cement Concrete Res., 34(12), 2175-2179. https://doi.org/10.1016/j.cemconres.2004.02.008.
- Ramezanianpour, A.A. and Davapanah, A. (2002), "Concrete properties estimation and mix design optimization based on neural networks", Proceedings of the World Conference on Concrete Materials and Structures (WCCNS), Kualalumpur, Malaysia.
- Saboya, F. Jr., Xavier, G.C. and Alexandre, J. (2007), "The use of the powder marble by-product to enhance the properties of brick ceramic", Constr. Build. Mater., 21(10), 1950-1960. https://doi.org/10.1016/j.conbuildmat.2006.05.029.
- Samui, P. (2008), "Support vector machine applied to settlement of shallow foundations on cohesionless soils", Comput. Geotech., 35(3), 419-427. https://doi.org/10.1016/j.compgeo.2007.06.014.
- Shafaatian, S.M.H., Akhavan, A., Maraghechi, H. and Rajabipour, F. (2013), "How does fly ash mitigate alkali-silica reaction (ASR) in accelerated mortar bar test (ASTM C1567)?", Cement Concrete Compos., 37, 143-153. https://doi.org/10.1016/j.cemconcomp.2012.11.004.
- Shawe-Taylor, J. and Cristianini, N. (2004), Kernel Methods for Pattern Analysis, Cambridge University Press.
- Sims, I. and Nixon, P.J. (2006), "Assessment of aggregates for alkali-aggregate reactivity potential: RILEM international recommendations", Marc-Andre Berube Symposium on Alkali-Aggregate Reactivity in Concrete, Canada, 71-91.
- Sun, J., Wang, Y., Liu, S., Dehghani, A., Xiang, X., Wei, J. and Wang, X. (2021), "Mechanical, chemical and hydrothermal activation for waste glass reinforced cement", Constr. Build. Mater., 301, 124361. https://doi.org/10.1016/j.conbuildmat.2021.124361.
- Swamy, R.N. (1991), The Alkali-Silica Reaction in Concrete, CRC Press.
- Swamy, R.N. and Al-Asali, M.M. (1988), "Engineering properties of concrete affected by alkali-silica reaction", Mater. J., 85(5), 367-374. https://doi.org/10.14359/2288.
- Tabatabaei, R., Sanjari, H.R. and Shamsadini, M. (2014), "The use of artificial neural networks in predicting ASR of concrete containing nano-silica", Comput. Concrete, 13(6), 739. http://doi.org/10.12989/cac.2014.13.6.739.
- Thomas, M. (2011) "The effect of supplementary cementing materials on alkali-silica reaction: A review", Cement Concrete Res., 41(12), 1224-1231. https://doi.org/10.1016/j.cemconres.2010.11.003.
- Torkan, M. and Naderi Dehkordi, M. (2018), "Evelopment of ANFIS-PSO, SVR-PSO, and ANN-PSO hybrid intelligent models for predicting the compressive strenrtg of concrete", Iran Univ. Sci. Technol., 8(4), 547-563. https://doi.org/10.3390/math7100965.
- Vapnik, V. (2013), The Nature of Statistical Learning Theory, Springer Science & Business Media.
- Vardhan, K., Goyal, S., Siddique, R. and Singh, M. (2015), "Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement", Constr. Build. Mater., 96, 615-621. https://doi.org/10.1016/j.conbuildmat.2015.08.071.
- Yan, K., Xu, H., Shen, G. and Liu, P. (2013), "Prediction of splitting tensile strength from cylinder compressive strength of concrete by support vector machine", Adv. Mater. Sci. Eng., 2013, Article ID 597257. https://doi.org/10.1155/2013/597257.
- Yazdi, J.S., Kalantary, F. and Yazdi, H.S. (2013), "Prediction of elastic modulus of concrete using support vector committee method", J. Mater. Civil Eng., 25(1), 9-20. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000507.
- Zhang, G., Chen, C., Li, K., Xiao, F., Sun, J., Wang, Y. and Wang, X. (2022), "Multi-objective optimisation design for GFRP tendon reinforced cemented soil", Constr. Build. Mater., 320, 126297. https://doi.org/10.1016/j.conbuildmat.2021.126297.
- Zhang, G., Chen, C., Sun, J., Li, K., Xiao, F., Wang, Y., ... & Wang, X. (2022), "Mixture optimisation for cement-soil mixtures with embedded GFRP tendons", J. Mater. Res. Technol., 18, 611-628. https://doi.org/10.1016/j.jmrt.2022.02.076.