DOI QR코드

DOI QR Code

Production of 4-Ethyl Malate through Position-Specific Hydrolysis of Photobacterium lipolyticum M37 Lipase

  • Received : 2021.12.31
  • Accepted : 2022.03.15
  • Published : 2022.05.28

Abstract

Microbial lipases are used widely in the synthesis of various compounds due to their substrate specificity and position specificity. 4-Ethyl malate (4-EM) made from diethyl malate (DEM) is an important starting material used to make argon fluoride (ArF) photoresist. We tested several microbial lipases and found that Photobacterium lipolyticum M37 lipase position-specifically hydrolyzed DEM to produce 4-EM. We purified the reaction product through silica gel chromatography and confirmed that it was 4-EM through nuclear magnetic resonance analysis. To mass-produce 4-EM, DEM hydrolysis reaction was performed using an enzyme reactor system that could automatically control the temperature and pH. Effects of temperature and pH on the reaction process were investigated. As a result, 50℃ and pH 4.0 were confirmed as optimal reaction conditions, meaning that M37 was specifically an acid lipase. When the substrate concentration was increased to 6% corresponding to 0.32 M, the reaction yield reached almost 100%. When the substrate concentration was further increased to 12%, the reaction yield was 81%. This enzyme reactor system and position-specific M37 lipase can be used to mass-produce 4-EM, which is required to synthesize ArF photoresist.

Keywords

Acknowledgement

This work was supported by the Technology development Program (S2965703) funded by the Ministry of SMEs and Startups (MSS, Korea).

References

  1. Fischer M, Pleiss J. 2003. The lipase engineering database: a navigation and analysis tool for protein families. Nucleic Acids Res. 31: 319-321. https://doi.org/10.1093/nar/gkg015
  2. Sharma R, Chisti Y, Banerjee UC. 2001. Production, purification, characterization, and applications of lipase. Biotechnol. Adv. 19: 627-662. https://doi.org/10.1016/S0734-9750(01)00086-6
  3. Stergiou PY, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, et al. 2013. Advances in lipase-catalyzed esterification reactions. Biotechnol. Adv. 31: 1846-1859. https://doi.org/10.1016/j.biotechadv.2013.08.006
  4. Gamayurova VS, Zinov'eva ME, Shnaider KL, Davletshina GA, 2021. Lipases in esterification reactions: a review. Catal. Ind. 13: 58-72. https://doi.org/10.1134/S2070050421010025
  5. Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, et al. 2018, Bacterial lipases: a review on purification and characterization. Prog. Biophys. Mol. Biol. 132: 23-34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014
  6. Hitch TCA, Clavel T. 2019. A proposed update for the classification and description of bacterial lipolytic enzymes. Peer J. 8: 7.
  7. Cygler M, Schrag JD, Ergan F. 1992. Advances in structural understanding of lipases, Biotechnol. Genet. Eng. Rev. 10: 143-184. https://doi.org/10.1080/02648725.1992.10647887
  8. Derewenda ZS. 1994. Structure and function of lipases. Adv. Protein Chem. 45: 1-52. https://doi.org/10.1016/S0065-3233(08)60637-3
  9. Widmann M, Juhl PB, Pleiss J. 2010. Structural classification by the lipase engineering database: a case study of Candida antarctica lipase A. BMC Genom. 11: 123. https://doi.org/10.1186/1471-2164-11-123
  10. Khan FI, LanD, DurraniR, HuanW, Zhao Z, Wang Y. 2017. The lid domain in lipases: structural and functional determinant of enzymatic properties. Front. Bioeng. Biotechnol. 5: 16.
  11. Juhl PB, Trodler P, Tyagi S, Pleiss J. 2009. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking. BMC Struct. Biol. 9: 39. https://doi.org/10.1186/1472-6807-9-39
  12. Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin Biotechnol. 13: 390-397. https://doi.org/10.1016/S0958-1669(02)00341-5
  13. Filho DG, Silva AG, Guidini CZ. 2019. Lipases: sources, immobilization methods, and industrial applications. Appl. Microbiol. Biotechnol. 103: 7399-7423. https://doi.org/10.1007/s00253-019-10027-6
  14. Chandra P, Enespa, Singh R, Arora PK. 2020. Microbial lipases and their industrial applications: a comprehensive review. Microb. Cell Fact. 19: 169. https://doi.org/10.1186/s12934-020-01428-8
  15. Houde A, Kademi A, Leblanc D. 2004. Lipases and their industrial applications: an overview. Appl. Biochem. Biotechnol. 118: 155-170. https://doi.org/10.1385/ABAB:118:1-3:155
  16. Saraswat R, Verma V, Sistla S, Bhushan I. 2017. Evaluation of alkali and thermotolerant lipase from an indigenous isolated strain for detergent formulation. Electron. J. Biotechnol. 30: 33-38. https://doi.org/10.1016/j.ejbt.2017.08.007
  17. Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S. 2011. A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis. 10: 221. https://doi.org/10.1186/1476-511X-10-221
  18. Sanchez DA, Tonetto GM, Ferreira ML. 2018. Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions, Biotechnol. Bioeng. 115: 6-24. https://doi.org/10.1002/bit.26458
  19. Koeller KM, Wong CH. 2001. Enzymes for chemical synthesis. Nature 409: 232-240. https://doi.org/10.1038/35051706
  20. Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. 2021. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. Engl. 60: 88-119. https://doi.org/10.1002/anie.202006648
  21. Tan T, Lu J, Nie K, Deng L, Wang F. 2010. Biodiesel production with immobilized lipase: a review. Biotechnol. Adv. 28: 628-634. https://doi.org/10.1016/j.biotechadv.2010.05.012
  22. Hama S, Noda H, Kondo A. 2018. How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr. Opin. Biotechnol. 50: 57-64. https://doi.org/10.1016/j.copbio.2017.11.001
  23. Kudo H, Nishikubo T. 2009. Development of novel photo-functional materials based on cyclic oligomers. Polymer J. 41: 569-581. https://doi.org/10.1295/polymj.pj2009086
  24. Sohn HS, Kim DG, Lee A, Lee JW, Kim JS, Kim JH, et al. 2012. Preparation of acid-cleavable branched polymers for argon fluoride photoresists via reversible addition-fragmentation chain-transfer polymerization. J. Appl. Polymer 125: 344-352. https://doi.org/10.1002/app.35575
  25. Han JY, Kim HK. 2011. Transesterification using the cross-linked enzyme aggregate of Photobacterium lipolyticum lipase M37. J. Microbiol. Biotechnol. 21: 1159-1165. https://doi.org/10.4014/jmb.1106.06048
  26. Ryu HS, Kim HK, Choi WC, Kim MH, Park SY, Han NS, et al. 2006. New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl. Microbiol. Biotechnol. 70: 321-326. https://doi.org/10.1007/s00253-005-0058-y
  27. Yang KS, Sohn JH, Kim HK. 2009. Catalytic properties of a lipase from Photobacterium lipolyticum for biodiesel production containing a high methanol concentration. J. Biosci. Bioeng. 107: 599-604. https://doi.org/10.1016/j.jbiosc.2009.01.009
  28. Jung SK, Jeong DG, Lee MS, Lee JK, Kim HK, Ryu SE, et al. 2008. Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum. Proteins 71: 476-484. https://doi.org/10.1002/prot.21884
  29. Kim HK, Lee JK, Kim H, Oh TK. 1996. Characterization of an alkaline lipase from Proteus vulgaris K80 and the DNA sequence of the encoding gene. FEMS Microbiol. Lett. 135: 117-121. https://doi.org/10.1016/0378-1097(95)00439-4
  30. Kim HK, Park SY, Lee JK, Oh TK. 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci. Biotechnol. Biochem. 62: 66-71. https://doi.org/10.1271/bbb.62.66
  31. Oh BC, Kim HK, Lee JK, Kang SC, Oh TK. 1999. Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning. FEMS Microbiol. Lett. 179: 385-392. https://doi.org/10.1016/S0378-1097(99)00439-5
  32. Mhetras NC, Bastawde KB, Gokhale DV. 2009. Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresour. Technol. 100: 1486-1490. https://doi.org/10.1016/j.biortech.2008.08.016
  33. Helal SE, Abdelhady HM, Abou-Taleb KA, Hassan MG, Amer MM. 2021. Lipase from Rhizopus oryzae R1: in-depth characterization, immobilization, and evaluation in biodiesel production. J. Genet. Eng. Biotechnol. 19: 1. https://doi.org/10.1186/s43141-020-00094-y
  34. Chang SW, Lee GC, Shaw JF. 2006. Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of the purified enzyme. J. Agric. Food Chem. 54: 5831-5838. https://doi.org/10.1021/jf060835e