Acknowledgement
We gratefully acknowledge the Saskatchewan Ministry of Agriculture for their financial support through the Agriculture Development Fund program (ADF #20180293). We also gratefully acknowledge the technical supports from Dr. Shannon Hood-Niefer, Saskatchewan Food Industry Development Centre.
References
- Crowe SJ, Bottichio L, Shade LN, Whitney BM, Corral N, Melius B, et al. 2017. Shiga toxin-producing E. coli infections associated with flour. N. Engl. J. Med. 377: 2036-2043. https://doi.org/10.1056/NEJMoa1615910
- Gill A, Carrillo C, Hadley M, Kenwell R, Chui L. 2019. Bacteriological analysis of wheat flour associated with an outbreak of Shiga toxin-producing Escherichia coli O121. Food Microbiol. 82: 474-481. https://doi.org/10.1016/j.fm.2019.03.023
- Morton V, Kershaw T, Kearney A, Taylor M, Galanis E, Mah V, et al. 2020. The use of multiple hypothesis-generating methods in an outbreak investigation of Escherichia coli O121 infections associated with wheat flour Canada 2016-2017. Epidemiol. Infect. 148: e265. https://doi.org/10.1017/S0950268820002381
- Rose DJ, Bianchini A, Martinez B, Flores RA. 2012. Methods for reducing microbial contamination of wheat flour and effects on functionality. Cereal Foods World 57:104-109. https://doi.org/10.1094/CFW-57-3-0104
- Canadian Food Inspection Agency (CFIA). 2017. Canadian Food Inspection Agency's (CFIA) Investigation into E. coli O121 in Flour and Flour Products. Accessed June 2, 2017.
- Agundez-Arvizu Z, Fernandez-Ramirez MV, Arce-Corrales ME, Cruz-Zaragoza E, Melendrez R, Chernov V, et al. 2006. Gamma radiation effects on commercial Mexican bread making wheat flour. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 245: 455-458. https://doi.org/10.1016/j.nimb.2005.11.141
- Li M, Sun QJ, Zhu KX. 2017. Delineating the quality and component changes of whole-wheat flour and storage stability of fresh noodles induced by microwave treatment. LWT 84: 378-384. https://doi.org/10.1016/j.lwt.2017.06.001
- Liu C, Zhang Y, Li H, Li L, Zheng X. 2020. Effect of ozone treatment on processing properties of wheat bran and shelf life characteristics of noodles fortified with wheat bran. J. Food Sci. Technol. 57: 3893-3902. https://doi.org/10.1007/s13197-020-04421-6
- Pankaj SK, Misra NN, Cullen PJ. 2013. Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov. Food Sci. Emerg. Technol. 19: 153-157. https://doi.org/10.1016/j.ifset.2013.03.001
- Bogaerts A, Neyts E, Gijbels R, Van der Mullen J. 2002. Gas discharge plasmas and their applications. Spectrochim. Acta B: At. Spectrosc. 57: 609-658. https://doi.org/10.1016/S0584-8547(01)00406-2
- Guerrero-Preston R, Ogawa T, Uemura M, Shumulinsky G, Valle BL, Pirini F, et al. 2014. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int. J. Mol. Med. 34: 941-946. https://doi.org/10.3892/ijmm.2014.1849
- Bauer A, Ni Y, Bauer S, Paulsen P, Modic M, Walsh JL, et al. 2017. The effects of atmospheric pressure cold plasma treatment on microbiological physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Sci. 128: 77-87. https://doi.org/10.1016/j.meatsci.2017.02.003
- Olatunde OO, Benjakul S, Vongkamjan K. 2019. Dielectric barrier discharge cold atmospheric plasma: bacterial inactivation mechanism. J. Food Saf. 39: 12705.
- Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann KD, Junger M. 2010. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process. Polym. 7: 224-230. https://doi.org/10.1002/ppap.200900059
- Hahnel M, von Woedtke T, Weltmann KD. 2010. Influence of the air humidity on the reduction of Bacillus spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge. Plasma Process. Polym. 7: 244-249. https://doi.org/10.1002/ppap.200900076
- Min SC, Roh SH, Niemira BA, Sites JE, Boyd G, Lacombe A. 2016. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7 Salmonella Listeria monocytogenes and Tulane virus in romaine lettuce. Int. J. Food. Microbiol. 237: 114-120. https://doi.org/10.1016/j.ijfoodmicro.2016.08.025
- Bahrami N, Bayliss D, Chope G, Penson S, Perehinec T, Fisk ID. 2016. Cold plasma: a new technology to modify wheat flour functionality. Food Chem. 202: 247-253. https://doi.org/10.1016/j.foodchem.2016.01.113
- Misra NN, Kaur S, Tiwari BK, Kaur A, Singh N, Cullen PJ. 2015. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocoll. 44: 115-121. https://doi.org/10.1016/j.foodhyd.2014.08.019
- Maran JP, Sivakumar V, Sridhar R, Immanuel VP. 2013. Development of model for mechanical properties of tapioca starch based edible films. Ind. Crops. Prod. 42: 159-168. https://doi.org/10.1016/j.indcrop.2012.05.011
- Kumar A, Prasad B, Mishra IM. 2007. Process parametric study for ethene carboxylic acid removal onto powder activated carbon using Box-Behnken design. Chem. Eng. Technol. 30: 932-937. https://doi.org/10.1002/ceat.200700084
- Montgomery DC. 2017. Design and analysis of experiments. John wiley & sons. pp. 17-18, Hoboken, NJ, USA.
- Feichtinger J, Schulz A, Walker M, Schumacher U. 2003. Sterilisation with low-pressure microwave plasmas. Surf. Coat. Technol. 174: 564-569. https://doi.org/10.1016/S0257-8972(03)00404-3
- Chen D, Wiertzema J, Peng P, Cheng Y, Liu J, Mao Q, et al. 2018. Effects of intense pulsed light on Cronobacter sakazakii inoculated in non-fat dry milk. J. Food Eng. 238: 178-187. https://doi.org/10.1016/j.jfoodeng.2018.06.022
- Niemira BA, Sites J. 2008. Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. J. Food Prot. 71: 1357-1365. https://doi.org/10.4315/0362-028X-71.7.1357
- Smet C, Baka M, Dickenson A, Walsh JL, Valdramidis VP, Van Impe JF. 2018. Antimicrobial efficacy of cold atmospheric plasma for different intrinsic and extrinsic parameters. Plasma Process. Polym. 15: 1700048. https://doi.org/10.1002/ppap.201700048
- Han L, Boehm D, Amias E, Milosavljevic V, Cullen PJ, Bourke P. 2016. Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innov. Food Sci. Emerg. Technol. 38: 384-392. https://doi.org/10.1016/j.ifset.2016.09.026
- Kvam E, Davis B, Mondello F, Garner AL. 2012. Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob. Agents Chemother. 56: 2028-2036. https://doi.org/10.1128/aac.05642-11
- Kim JE, Lee DU, Min SC. 2014. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 38: 128-136. https://doi.org/10.1016/j.fm.2013.08.019
- Sureshkumar A, Sankar R, Mandal M, Neogi S. 2010. Effective bacterial inactivation using low temperature radio frequency plasma. Int. J. Pharm. 396: 17-22. https://doi.org/10.1016/j.ijpharm.2010.05.045
- Qiu P, Cui M, Kang K, Park B, Son Y, Khim E, et al. 2014. Application of Box-Behnken design with response surface methodology for modeling and optimizing ultrasonic oxidation of arsenite with H2O2. Open Chem. J. 12: 164-172. https://doi.org/10.2478/s11532-013-0360-y
- Kong W, Liu N, Zhang J, Yang Q, Hua S, Song H, et al. 2014. Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. J. Food Sci. Technol. 51: 2006-2013. https://doi.org/10.1007/s13197-012-0706-z
- Han L, Patil S, Boehm D, Milosavljevic V, Cullen P, Bourke P. 2016. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 82: 450-458. https://doi.org/10.1128/AEM.02660-15
- Mosovska S, Medvecka V, Halaszova N, Durina P, Valik L', Mikulajova A, et al. 2018. Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Int. Food Res. J. 106: 862-869. https://doi.org/10.1016/j.foodres.2018.01.066
- Olatunde OO, Benjakul S, Vongkamjan K. 2019. High voltage cold atmospheric plasma: antibacterial properties and its effect on quality of Asian sea bass slices. Innov. Food Sci. Emerg. Technol. 52: 305-312. https://doi.org/10.1016/j.ifset.2019.01.011
- Ziuzina D, Patil S, Cullen P, Keener K, Bourke P. 2013. Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J. Appl. Microbiol. 114: 778-787. https://doi.org/10.1111/jam.12087
- Zhuang H, Rothrock MJ, Line JE, Lawrence KC, Gamble GR, Bowker BC, et al. 2020. Optimization of in-package cold plasma treatment conditions for raw chicken breast meat with response surface methodology. Innov. Food Sci. Emerg. Technol. 66: 102477. https://doi.org/10.1016/j.ifset.2020.102477
- Jeon J, Rosentreter TM, Li Y, Isbary G, Thomas HM, Zimmermann JL, et al. 2014. Bactericidal agents produced by Surface Micro-Discharge (SMD) plasma by controlling gas compositions. Plasma Process. Polym. 11: 426-436. https://doi.org/10.1002/ppap.201300173
- Patil S, Moiseev T, Misra NN, Cullen PJ, Mosnier JP, Keener KM, et al. 2014. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. J. Hosp. Infect. 88: 162-169. https://doi.org/10.1016/j.jhin.2014.08.009
- Han L, Patil S, Boehm D, Milosavljevic V, Cullen PJ, Bourke P. 2016. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microbiol. 82: 450-458. https://doi.org/10.1128/AEM.02660-15