DOI QR코드

DOI QR Code

4-Chloro-2-Isopropyl-5-Methylphenol Exhibits Antimicrobial and Adjuvant Activity against Methicillin-Resistant Staphylococcus aureus

  • Kim, Byung Chan (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Kim, Hyerim (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Lee, Hye Soo (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Kim, Su Hyun (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Cho, Do-Hyun (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Jung, Hee Ju (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Bhatia, Shashi Kant (Department of Biological Engineering, College of Engineering, Konkuk University) ;
  • Yune, Philip S. (Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine) ;
  • Joo, Hwang-Soo (Department of Biotechnology, College of Engineering, Duksung Women's University) ;
  • Kim, Jae-Seok (Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine) ;
  • Kim, Wooseong (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Yang, Yung-Hun (Department of Biological Engineering, College of Engineering, Konkuk University)
  • Received : 2022.03.28
  • Accepted : 2022.05.02
  • Published : 2022.06.28

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) causes severe infections and poses a global healthcare challenge. The utilization of novel molecules which confer synergistical effects to existing MRSA-directed antibiotics is one of the well-accepted strategies in lieu of de novo development of new antibiotics. Thymol is a key component of the essential oil of plants in the Thymus and Origanum genera. Despite the absence of antimicrobial potency, thymol is known to inhibit MRSA biofilm formation. However, the anti-MRSA activity of thymol analogs is not well characterized. Here, we assessed the antimicrobial activity of several thymol derivatives and found that 4-chloro-2-isopropyl-5-methylphenol (chlorothymol) has antimicrobial activity against MRSA and in addition it also prevents biofilm formation. Chlorothymol inhibited staphyloxanthin production, slowed MRSA motility, and altered bacterial cell density and size. This compound also showed a synergistic antimicrobial activity with oxacillin against highly resistant S. aureus clinical isolates and biofilms associated with these isolates. Our results demonstrate that chlorinated thymol derivatives should be considered as a new lead compound in anti-MRSA therapeutics.

Keywords

Acknowledgement

This research was supported by Research Program to solve social issues of the National Research Foundation of Korea (NRF)s funded by the Ministry of Science and ICT, South Korea [grant number 2017M3A9E4077234] and [NRF- 2022R1A2C2003138, NRF-2019M3E6A1103979]. W.K. was supported by the National Research Foundation of Korea (NRF) Grant (2020R1C1C1008842, 2018R1A5A2025286).

References

  1. Alanis AJ. 2005. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 36: 697-705. https://doi.org/10.1016/j.arcmed.2005.06.009
  2. Imperial ICVJ, Ibana JA. 2016. Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Front. Microbiol. 7: 1983. https://doi.org/10.3389/fmicb.2016.01983
  3. Miyake Y, Iwai1 T, Sugai M, Miura1 K, Suginaka H, Nagasaka1 N. 1991. Incidence and characterization of Staphylococcus aureus from the tongues of children. J. Dent. Res. 70: 1045-1047. https://doi.org/10.1177/00220345910700070501
  4. Verhoef J, Beaujean D, Blok H, Baars A, Meyler A, van der Werken C, et al. 1999. A Dutch approach to methicillin-resistant Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 18: 461-466. https://doi.org/10.1007/s100960050324
  5. Peacock SJ, Paterson GK. 2015. Mechanisms of methicillin resistance in Staphylococcus aureus. Ann. Rev. Biochem. 84: 577-601. https://doi.org/10.1146/annurev-biochem-060614-034516
  6. Blot SI, Vandewoude KH, Hoste EA, Colardyn FA. 2002. Outcome and attributable mortality in critically Ill patients with bacteremia involving methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Arch. Intern. Med 162: 2229-35. https://doi.org/10.1001/archinte.162.19.2229
  7. Pantosti A, Venditti M. 2009. What is MRSA? Eur. Resp. J. 34: 1190-1196. https://doi.org/10.1183/09031936.00007709
  8. Boswihi SS, Udo EE. 2018. Methicillin-resistant Staphylococcus aureus?: an update on the epidemiology, treatment options and infection control. Curr. Med. Res. Pract. 8: 18-24. https://doi.org/10.1016/j.cmrp.2018.01.001
  9. Cuny C, Wieler LH, Witte W. 2015. Livestock-associated MRSA: the impact on humans. Antibiotics 4: 521-543. https://doi.org/10.3390/antibiotics4040521
  10. Diep BA, Otto M. 2008. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol. 16: 361-369. https://doi.org/10.1016/j.tim.2008.05.002
  11. Yamamoto T, Nishiyama A, Takano T, Yabe S, Higuchi W, Razvina O, et al. 2010. Community-acquired methicillin-resistant Staphylococcus aureus: community transmission, pathogenesis, and drug resistance. J. Infect. Chemother. 16: 225-254. https://doi.org/10.1007/s10156-010-0045-9
  12. Otto M. 2012. MRSA virulence and spread. Cell. Microbiol. 14: 1513-1521. https://doi.org/10.1111/j.1462-5822.2012.01832.x
  13. Wilke MS, Lovering AL, Strynadka NCJ. 2005. β-Lactam antibiotic resistance: a current structural perspective. Curr. Opin. Microbiol. 8: 525-533. https://doi.org/10.1016/j.mib.2005.08.016
  14. Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, et al. 2021. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem. 16: 65-80. https://doi.org/10.1002/cmdc.202000677
  15. Khatoon Z, McTiernan CD, Suuronen EJ, Mah T-F, Alarcon EI, Alarcon Bacterial EI. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 4: e01067. https://doi.org/10.1016/j.heliyon.2018.e01067
  16. Holt DC, Holden MTG, Tong SYC, Castillo-Ramirez S, Clarke L, Quail MA, et al. 2011. A very early-branching staphylococcus aureus lineage lacking the carotenoid pigment staphyloxanthin. Genome Biol. Evol. 3: 881-895. https://doi.org/10.1093/gbe/evr078
  17. Dharmaraja AT. 2017. Role of Reactive Oxygen Species (ROS) in therapeutics and drug resistance in cancer and bacteria. J. Med. Chem. 60: 3221-3240. https://doi.org/10.1021/acs.jmedchem.6b01243
  18. Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. 2019. Staphyloxanthin: a potential target for antivirulence therapy. Infect. Drug Res. 12: 2151-2160. https://doi.org/10.2147/IDR.S193649
  19. Pollitt EJG, Crusz SA, Diggle SP. 2015. Staphylococcus aureus forms spreading dendrites that have characteristics of active motility. Sci. Rep. 5: 17698. https://doi.org/10.1038/srep17698
  20. Cui H, Zhang C, Li C, Lin L. 2020. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. LWT 122: 109057. https://doi.org/10.1016/j.lwt.2020.109057
  21. Cheung GYC, Joo HS, Chatterjee SS, Otto M. 2014. Phenol-soluble modulins - critical determinants of staphylococcal virulence. FEMS Microbiol. Rev. 38: 698-719. https://doi.org/10.1111/1574-6976.12057
  22. Chao S, Young G, Oberg C, Nakaoka K. 2008. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils. Flavour Fragr. J. 23: 444-449. https://doi.org/10.1002/ffj.1904
  23. Marchese A, Orhan IE, Daglia M, Barbieri R, di Lorenzo A, Nabavi SF, et al. 2016. Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem. 210: 402-414. https://doi.org/10.1016/j.foodchem.2016.04.111
  24. Kachur K, Suntres Z. 2020. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 60: 3042-3053. https://doi.org/10.1080/10408398.2019.1675585
  25. Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras M del M, Segura-Carretero A, et al. 2018. Thymol, thyme, and other plant sources: health and potential uses. Phytother. Res. 32: 1688-1706. https://doi.org/10.1002/ptr.6109
  26. Oussalah M, Caillet S, Saucier L, Lacroix M. 2007. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18: 414-420. https://doi.org/10.1016/j.foodcont.2005.11.009
  27. Valliammai A, Selvaraj A, Yuvashree U, Aravindraja C, Karutha Pandian S. 2020. sarA-dependent antibiofilm activity of thymol enhances the antibacterial efficacy of rifampicin against Staphylococcus aureus. Front. Microbiol. 11: 1744. https://doi.org/10.3389/fmicb.2020.01744
  28. Lee HS, Song HS, Lee HJ, Kim SH, Suh MJ, Cho JY, et al. 2021. Comparative study of the difference in behavior of the accessory gene regulator (agr) in USA300 and USA400 community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). J. Microbiol. Biotechnol. 31: 1060-1068. https://doi.org/10.4014/jmb.2104.04032
  29. Choi TR, Song HS, Han YH, Park YL, Park JY, Yang SY, et al. 2020. Enhanced tolerance to inhibitors of Escherichia coli by heterologous expression of cyclopropane-fatty acid-acyl-phospholipid synthase (cfa) from Halomonas socia. Bioprocess Biosys. Eng. 43: 909-918. https://doi.org/10.1007/s00449-020-02287-8
  30. Peters BM, Ward RM, Rane HS, Lee SA, Noverr MC. 2013. Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob. Agents Chemother. 57: 74-82. https://doi.org/10.1128/AAC.01599-12
  31. Pollitt EJG, Diggle SP. 2017. Defining motility in the Staphylococci. Cell. Mol. Life Sci. 74: 2943-2958. https://doi.org/10.1007/s00018-017-2507-z
  32. Song HS, Bhatia SK, Choi TR, Gurav R, Kim HJ, Lee SM, et al. 2021. Increased antibiotic resistance of methicillin-resistant Staphylococcus aureus USA300 Δpsm mutants and a complementation study of Δpsm mutants using synthetic phenol-soluble modulins. J. Microbiol. Biotechnol. 31: 115-122. https://doi.org/10.4014/jmb.2007.07034
  33. Botelho MG. 2020. Fractional inhibitory concentration index of combinations of antibacterial agents against cariogenic organisms. J. Dent. 28: 565-570. https://doi.org/10.1016/S0300-5712(00)00039-7
  34. Meletiadis J, Pournaras S, Roilides E, Walsh TJ. 2010. Defining fractional inhibitory concentration index cutoffs for additive interactions based on self-drug additive combinations, Monte Carlo simulation analysis, and in vitro-in vivo correlation data for antifungal drug combinations against Aspergillus fumigatus. Antimicrob. Agents Chemother. 54: 602-609. https://doi.org/10.1128/aac.00999-09
  35. Park YL, Bhatia SK, Gurav R, Choi TR, Kim HJ, Song HS, et al. 2020. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int. J. Biol. Macromol. 154: 929-936. https://doi.org/10.1016/j.ijbiomac.2020.03.129
  36. Kim W, Zou G, Hari TPA, Wilt IK, Zhu W, Galle N, et al. 2019. A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 116: 16529-16534. https://doi.org/10.1073/pnas.1904700116
  37. Kim SM, Zou G, Kim H, Kang M, Ahn S, Heo HY, et al. 2022. Antimicrobial activity of the membrane-active compound nTZDpa is enhanced at low pH. Biomed. Pharmacother. 150: 112977. https://doi.org/10.1016/j.biopha.2022.112977
  38. Muthukrishnan G, Masters EA, Daiss JL, Schwarz EM. 2019. Mechanisms of immune evasion and bone tissue colonization that make Staphylococcus aureus the primary pathogen in osteomyelitis. Curr. Osteoporo. Rep. 17: 395-404. https://doi.org/10.1007/s11914-019-00548-4
  39. Tsompanidou E, Denham EL, Becher D, de Jong A, Buist G, van Oosten M, et al. 2013. Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces. Appl. Environ. Microbiol. 79: 886-895. https://doi.org/10.1128/AEM.03157-12
  40. Zheng Y, Joo HS, Nair V, Le KY, Otto M. 2018. Do amyloid structures formed by Staphylococcus aureus phenol-soluble modulins have a biological function? Int. J. Med. Microbiol. 308: 675-682. https://doi.org/10.1016/j.ijmm.2017.08.010
  41. Winterbourn CC, Kettle AJ, Hampton MB. 2016. Reactive oxygen species and neutrophil function. Ann. Rev. Biochem. 85: 765-792. https://doi.org/10.1146/annurev-biochem-060815-014442
  42. Valliammai A, Selvaraj A, Muthuramalingam P, Priya A, Ramesh M, Pandian SK. 2021. Staphyloxanthin inhibitory potential of thymol impairs antioxidant fitness, enhances neutrophil mediated killing and alters membrane fluidity of methicillin resistant Staphylococcus aureus. Biomed. Pharmacother. 141: 111933. https://doi.org/10.1016/j.biopha.2021.111933
  43. Selvaraj A, Valliammai A, Muthuramalingam P, Priya A, Suba M, Ramesh M, et al. 2020. Carvacrol targets SarA and CrtM of methicillin-resistant Staphylococcus aureus to mitigate biofilm formation and staphyloxanthin synthesis: an in vitro and in vivo approach. ACS Omega 5: 31100-31114. https://doi.org/10.1021/acsomega.0c04252
  44. Chan PF, Foster SJ. 1998. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. Am. Soc. Microbiol. 23: 6232-6241.
  45. Queck SY, Jameson-Lee M, Villaruz AE, Bach THL, Khan BA, Sturdevant DE, et al. 2008. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 32: 150-158. https://doi.org/10.1016/j.molcel.2008.08.005
  46. Shang Wei Wu, de Lencastre H, Tomasz A. 2001. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J. Bacteriol. 183: 2417-2424. https://doi.org/10.1128/JB.183.8.2417-2424.2001
  47. Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. 2019. Staphyloxanthin: a potential target for antivirulence therapy. Infect. Drug Res. 12: 2151-2160. https://doi.org/10.2147/IDR.S193649
  48. Nemati M, Hermans K, Devriese LA, Maes D, Haesebrouck F. 2009. Screening of genes encoding adhesion factors and biofilm formation in Staphylococcus aureus isolates from poultry. Avian Pathol. 38: 513-517. https://doi.org/10.1080/03079450903349212
  49. Phitaktim S, Chomnawang M, Sirichaiwetchakoon K, Dunkhunthod B, Hobbs G, Eumkeb G. 2016. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiol. 16: 195. https://doi.org/10.1186/s12866-016-0814-4
  50. Kowalczyk A, Przychodna M, Sopata S, Bodalska A, Fecka I. 2020. Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules 25: 4125. https://doi.org/10.3390/molecules25184125