과제정보
The authors would like to acknowledge the financial support provided by Mehran University of Engineering & Technology, Jamshoro, Sindh and Pakistan.
참고문헌
- Atkinson, J.H., Richardson, D. and Stallebrass, S.E. (1990), "Effect of recent stress history on the stiffness of over consolidated soil", Geotechnique, 40(4), 531-540. https://doi.org/10.1680/geot.1990.40.4.531.
- Bai, X.D., Cheng, W.C. and Li, G. (2021), "A comparative study of different machine learning algorithms in predicting EPB shield behaviour: a case study at the Xi'an metro, China", Acta Geotechnica, 16(12), 4061-4080. https://doi.org/10.1007/s11440-021-01383-7.
- CEN (2001), Eurocode 7 part 1: Geotechnical design: General rules, Final Draft prEN 1997-1. European Committeef or Standardization (CEN), Brussels.
- Finno, R.J., Lawrence, S.A., Allawh, N.F. and Harahap, I.S. (1991), "Analysis of performance of pile groups adjacent to deep excavation", J. Geotech. Eng., 117(6), 934-955. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:6(934).
- Francescon, M. (1983), "Model pile tests in clay: Stresses and displacements due to installation and axial loading", PhD thesis, Cambridge Univ., Cambridge, U.K.
- Goh, A.T.C., Wong, K.S., Teh, C.I. and Wen, D. (2003), "Pile response adjacent to braced excavation", J. Geotech. Geoenviron. Eng., 129(4), 383-386. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(383).
- Gudehus, G. (1996), "A comprehensive constitutive equation for granular materials", Soils Found., 36(1), 1-12. https://doi.org/10.3208/sandf.36.1.
- Herle, I. and Gudehus, G. (1999), "Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies", Mech. Cohesive-frictional Mater.: Int. J. Exper. Model. Comput. Mater. Struct., 4(5), 461-486. https://doi.org/10.1002/(sici)10991484(199909)4:5%3C461::aid-cfm71%3E3.0.co;2-p.
- Hibbitt, D., Karlsson, B.I. and Sorensen, E.P. (2010), Abaqus user's manual, version 6.10.2. Hibbitt, Karlsson & Sorensen Inc;, Providence, RI, USA.
- Hong, Y., Koo, C.H., Zhou, C., Ng, C.W. and Wang, L.Z. (2017), "Small strain path-dependent stiffness of Toyoura sand: Laboratory measurement and numerical implementation", Int. J. Geomech., 17(1), 04016036. https://doi.org/10.1061/(asce)gm.1943-5622.0000664.
- Hsiung, B.C.B. (2009), "A case study on the behaviour of a deep excavation in sand", Comput. Geotech., 36(4), 665-675. https://doi.org/10.1016/j.compgeo.2008.10.003.
- Hu, W., Cheng, W.C., Wen, S. and Rahman, M.M. (2021), "Effects of chemical contamination on microscale structural characteristics of intact loess and resultant macroscale mechanical properties", Catena, 203, 105361. https://doi.org/10.1016/j.catena.2021.105361.
- Hu, W., Cheng, W.C., Wang, L. and Xue, Z.F. (2022), "Microstructural characteristics deterioration of intact loess under acid and saline solutions and resultant macro-mechanical properties", Soil Tillage Res., 220, 105382. https://doi.org/10.1016/j.still.2022.105382.
- Ishihara, K. (1993), "Liquefaction and flow failure during earthquakes", Geotechnique, 43(3), 351-415. https://doi.org/10.1680/geot.1993.43.3.351
- ISSMFE (1985), "Axial pile loading test - Part I: Static loading", Geotech. Test. J., 8(2), 79-80, https://doi.org/10.1520/GTJ10514J.
- Jaky, J. (1944), The coefficient of earth pressure at rest", J. Soc. Hungarian Arch. Eng., 355-8 [in Hungarian].
- Korff, M., Mair, R. and Van Tol, F.A.F. (2016), "Pile-soil interaction and settlement effects induced by deep excavations", J. Geotech. Geoenviron. Eng., 138(7), 04016034. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001434.
- Liyanapathirana, D.S. and Nishanthan, R. (2016), "Influence of deep excavation induced ground movements on adjacent piles", Tunn. Undergr. Sp. Tech., 52, 168-181. https://doi.org/10.1016/j.tust.2015.11.019.
- Lee, C.J. and Chiang, K.H. (2007), "Responses of single piles to tunnelling-induced soil movements in sandy ground", Can. Geotech. J., 44, 1224-1241. https://doi.org/10.1139/T07-050.
- Lu, H., Shi, J., Ng, C.W.W. and Lv, Y. (2020), "Three-dimensional centrifuge modeling of the influence of side-by-side twin tunneling on a piled raft", Tunn. Undergr. Sp. Tech., 103, 103486. https://doi.org/10.1016/j.tust.2020.103486.
- Maeda, K. and Miura, K. (1999), "Relative density dependency of mechanical properties of sands", Soils Found., 39(1), 69-79. https://doi.org/10.3208/sandf.39.69.
- Niemunis, A. and Herle, I. (1997), "Hypoplastic model for cohesionless soils with elastic strain range", Mech. Cohesive-frictional Mater.: Int. J. Exper. Model. Comput. Mater. Struct., 2(4), 279-299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8.
- Ng, C.W., Wei, J., Poulos, H. and Liu, H. (2017), "Effects of multipropped excavation on an adjacent floating pile", J. Geotech. Geoenviron. Eng., 143(7), 04017021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001696.
- Ng, C.W., Shakeel, M., Wei, J. and Lin, S. (2021), "Performance of existing piled raft and pile group due to adjacent multipropped excavation: 3D centrifuge and numerical modeling", J. Geotech. Geoenviron. Eng., 147(4), 04021012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002501
- Ong, D.E., Leung, C.E. and Chow, Y.K. (2006), "Pile behavior due to excavation-induced soil movement in clay. I: Stable wall", J. Geotech. Geoenviron. Eng., 132(1), 36-44. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:1(36).
- Ong, D.E.L., Leung, C.F. and Chow, Y.K. (2009), "Behavior of pile groups subject to excavation-induced soil movement in very soft clay", J. Geotech. Geoenviron. Eng., 135(10), 1462-1474. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000095.
- Poulos, H.G. (2001), "Piled raft foundations: design and applications", Geotechnique, 51(2), 95-113. https://doi.org/10.1680/geot.2001.51.2.95.
- Shi, J., Liu, G., Huang, P. and Ng, C.W.W. (2015), "Interaction between a large-scale triangular excavation and adjacent structures in Shanghai soft clay", Tunn. Undergr. Sp. Tech., 50, 282-295. https://doi.org/10.1016/j.tust.2015.07.013.
- Shi, J., Wei, J., Ng, C.W. and Lu, H. (2019), "Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand", Comput. Geotech., 116, 103216. https://doi.org/10.1016/j.compgeo.2019.103216.
- Soomro, M.A., Mangnejo, D.A., Saand, A. and Hong, Y. (2021a), "Responses of a masonry facade to multi-propped deep excavation-induced ground deformations: 3D numerical parametric study", Eur. J. Environ. Civil Eng., 1-29. https://doi.org/10.1080/19648189.2021.1926336.
- Soomro, M.A., Mangnejo, D.A., Saand, A., Mangi, N. and Auchar Zardari, M. (2021b), "Influence of stress relief due to deep excavation on a brick masonry wall: 3D numerical predictions", Eur. J. Environ. Civil Eng., 1-24. https://doi.org/10.1080/19648189.2021.2004450.
- Soomro, M.A., Mangnejo, D.A., Saand, A. and Mangi, N. (2021c), "3D numerical analysis of a masonry facade subjected to excavation-induced ground deformation", Int. J. Geotech. Eng., 1-13. https://doi.org/10.1080/19386362.2021.1937853.
- Soomro, M.A., Saand, A., Mangi, N., Mangnejo, D.A., Karira, H., and Liu, K. (2021d), "Numerical modelling of effects of different multipropped excavation depths on adjacent single piles: comparison between floating and end-bearing pile responses", Eur. J. Environ. Civil Eng., 25(14), 2592-2622. https://doi.org/10.1080/19648189.2019.1638312.
- Soomro, M.A., Mangi, N., Memon, A.H. and Mangnejo, D.A. (2022a), "Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles", Geomech. Eng., 29(1), 25-40. https://doi.org/10.12989/gae.2022.29.1.025.
- Soomro, M.A., Kumar, M., Mangi, N., Mangnejo, D.A. and Cui, Z. D. (2022b), "Parametric study of twin tunneling effects on piled foundations in stiff clay: 3D finite-element approach", Int. J. Geomech., 22(6), 04022079. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002386.
- Soomro, M.A., Liu, K., Mangnejo, D.A. and Mangi, N. (2022c), "Effects of twin excavations with different construction sequence on a brick masonry wall: 3D finite element approach", Structures, 41, 866-886. https://doi.org/10.1016/j.istruc.2022.05.060.
- Tan, Y., Huang, R., Kang, Z. and Bin, W. (2016), "Covered semi-top-down excavation of subway station surrounded by closely spaced buildings in downtown Shanghai: Building response", J. Perform. Constr. Fac., 30(6), 04016040. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000892.
- Wang, L., Cheng, W.C. and Xue, Z.F. (2022), "Investigating microscale structural characteristics and resultant macroscale mechanical properties of loess exposed to alkaline and saline environments", Bull. Eng. Geol. Environ., 81(4), 1-17. https://doi.org/10.1007/s10064-022-02640-z.
- Xue, Z.F., Cheng, W.C., Wang, L. and Song, G. (2021), "Improvement of the shearing behaviour of loess using recycled straw fiber reinforcement", KSCE J. Civil Eng., 25(9), 3319-3335. https://doi.org/10.1007/s12205-021-2263-3.
- Zhang, R., Zheng, J., Pu, H. and Zhang, L. (2011), "Analysis of excavation induced responses of loaded pile foundations considering unloading effect", Tunn. Undergr. Sp. Tech., 26(2), 320-335. https://doi.org/10.1016/j.tust.2010.11.003.
- Zhang, L.M. and Ng, A.M.Y. (2005), "Probabilistic limiting tolerable displacements for serviceability limit state design of foundations", Geotechnique, 55(2), 151-161. https://doi.org/10.1680/geot.2005.55.2.151.