DOI QR코드

DOI QR Code

전자소자 열분석을 위한 열반사 현미경 기술

Thermoreflectance Microscopy for Thermal Analysis of Electronics

  • 김현범 (서울대학교 재료공학부) ;
  • 이승환 (서울대학교 재료공학부) ;
  • 장혜진 (서울대학교 재료공학부)
  • Kim, Hyeon-Beom (Department of Materials Science and Engineering, Seoul National University) ;
  • Lee, Seunghwan (Department of Materials Science and Engineering, Seoul National University) ;
  • Jang, Hyejin (Department of Materials Science and Engineering, Seoul National University)
  • 투고 : 2022.06.10
  • 심사 : 2022.06.28
  • 발행 : 2022.06.30

초록

최근 거대 데이터 기반의 미래 기술이 발전함에 따라 전자 소자의 고성능 및 고집적화 추세가 지속되고 있는데, 이는 심각한 발열 문제를 수반하여 소자의 신뢰성을 위협하는 주요 요인으로 작용하고 있다. 효과적인 열관리 대책을 수립하기 위해서는 소자의 구동 환경에서 온도 분포를 정확히 평가하고 방열 경로를 설계하는 것이 필요하다. 본 논문에서는 소자의 온도 분포를 비접촉 방식의 높은 공간 및 시간 분해능으로 관찰할 수 있는 열반사 현미경 기술을 소개한다. 구체적으로 열반사 현미경의 원리 및 구동 형태를 알아보고, 온도, 공간, 시간 분해능 향상을 위한 최신 연구 동향과 다양한 전자 소자의 온도 및 열적 특성 분석에 적용된 사례를 함께 살펴본다.

With the advent of technologies based on big data, the trend of electronics towards high performance and high integration density continues. However, this development of electronics suffers from overheating issues, which seriously threaten the reliability of the devices. To develop effective strategies for thermal management, it is crucial to accurately evaluate the temperature distribution and design the heat dissipation path within the device in the operating condition. This paper introduces thermoreflectance microscopy that can observe the temperature distribution of a device with high spatial and temporal resolutions in a non-contact way. Specifically, the working principle and various forms of thermoreflectance microscopy are presented along with the latest research trends to improve the temperature, space, and time resolutions. We further review several examples in which thermoreflectance microscopy is applied to investigate the temperature and thermal characteristics of electronic devices.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022M3I7A4085485).

참고문헌

  1. IEEE Electronics Packaging Society, "Heterogeneous Integration Roadmap 2021 Edition", IEEE, (2022) from https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2021-edition.html
  2. J. H. Pang, D. Chong, and T. Low, "Thermal cycling analysis of flip-chip solder joint reliability", IEEE Trans. Compon. Packag. Technol., vol. 24, no. 4, pp. 705-712, (2001). https://doi.org/10.1109/6144.974964
  3. L. J. Ladani, "Numerical analysis of thermo-mechanical reliability of through silicon vias (TSVs) and solder interconnects in 3-dimensional integrated circuits", Microelectron. Eng., vol. 87, no. 2, pp. 208-215, (2010). https://doi.org/10.1016/j.mee.2009.07.022
  4. M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, "CCD-based thermoreflectance microscopy: principles and applications", J. Phys. D: Appl. Phys., vol. 42, no. 14, p. 143001, (2009). https://doi.org/10.1088/0022-3727/42/14/143001
  5. Y. Zhang, W. Zhu, F. Hui, M. Lanza, T. Borca-Tasciuc, and M. Munoz Rojo, "A review on principles and applications of scanning thermal microscopy (SThM)", Adv. Funct. Mater., vol. 30, no. 18, p. 1900892, (2020). https://doi.org/10.1002/adfm.201900892
  6. B. Hussain, B. Jalil, M. A. Pascali, M. Imran, G. Serafino, D. Moroni, and P. Ghelfi, "Thermal vulnerability detection in integrated electronic and photonic circuits using infrared thermography", Appl. Opt., vol. 59, no. 17, pp. E97-E106, (2020). https://doi.org/10.1364/ao.389960
  7. D. Kendig, K. Yazawa, A. Marconnet, M. Asheghi, and A. Shakouri, "Side-by-side comparison between infrared and thermoreflectance imaging using a thermal test chip with embedded diode temperature sensors", in 2012 28th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2012: IEEE, pp. 344-347, (2012).
  8. T. Miyazaki and S. Adachi, 'Analysis of spectroscopic-ellipsometry and thermoreflectance spectra of Si", J. Appl. Phys., vol. 77, no. 4, pp. 1741-1746, (1995). https://doi.org/10.1063/1.358867
  9. E. Matatagui, A. Thompson, and M. Cardona, "Thermoreflectance in semiconductors", Phys. Rev., vol. 176, no. 3, p. 950, (1968). https://doi.org/10.1103/PhysRev.176.950
  10. K. Maize and A. Shakouri, "Transient thermal imaging using thermoreflectance", in 2008 24th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2008: IEEE, pp. 55-58, (2008).
  11. D. U. Kim, C. B. Jeong, J. D. Kim, K. S. Lee, H. Hur, K. H. Nam, G. H. Kim, and K. S. Chang, "Laser scanning confocal thermoreflectance microscope for the backside thermal imaging of microelectronic devices", Sens., vol. 17, no. 12, p. 2774, (2017). https://doi.org/10.3390/s17122774
  12. J. A. Summers, T. Yang, M. T. Tuominen, and J. A. Hudgings, "High contrast, depth-resolved thermoreflectance imaging using a Nipkow disk confocal microscope", Rev. Sci. Instrum., vol. 81, no. 1, p. 014902, (2010). https://doi.org/10.1063/1.3276700
  13. J. Christofferson and A. Shakouri, "Thermoreflectance based thermal microscope", Rev. Sci. Instrum., vol. 76, no. 2, p. 024903, (2005). https://doi.org/10.1063/1.1850632
  14. S. Grauby, A. Salhi, J.-M. Rampnoux, H. Michel, W. Claeys, and S. Dilhaire, "Laser scanning thermoreflectance imaging system using galvanometric mirrors for temperature measurements of microelectronic devices", Rev. Sci. Instrum., vol. 78, no. 7, p. 074902, (2007). https://doi.org/10.1063/1.2757473
  15. P. E. Raad, P. L. Komarov, and M. G. Burzo, "Non-contact surface temperature measurements coupled with ultrafast real-time computation", in 2007 23rd Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2007: IEEE, pp. 57-63, (2007).
  16. D. Pierscinska, K. Pierscinski, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, "CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers", Semicond. Sci. Technol., vol. 31, no. 11, p. 115006, (2016). https://doi.org/10.1088/0268-1242/31/11/115006
  17. E. Koskelo, A. Radunskaya, and J. Hudgings, "Using noise to stochastically enhance the resolution of charge coupled device based thermoreflectance imaging", J. Appl. Phys., vol. 128, no. 10, p. 104502, (2020). https://doi.org/10.1063/5.0017231
  18. S. Grauby, B. Forget, S. Hole, and D. Fournier, "High resolution photothermal imaging of high frequency phenomena using a visible charge coupled device camera associated with a multichannel lock-in scheme", Rev. Sci. Instrum., vol. 70, no. 9, pp. 3603-3608, (1999). https://doi.org/10.1063/1.1149966
  19. B. Vermeersch, J. Christofferson, K. Maize, A. Shakouri, and G. De Mey, "Time and frequency domain CCD-based thermoreflectance techniques for high-resolution transient thermal imaging", in 2010 26th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2010: IEEE, pp. 228-234, (2010).
  20. K. Allison, M. Hallman, E. Koskelo, J. Hardin, A. Radunskaya, and J. Hudgings, "Increasing the speed of frequency-domain, homodyne thermoreflectance imaging", Rev. Sci. Instrum., vol. 91, no. 4, p. 044901, (2020). https://doi.org/10.1063/1.5135922
  21. W. J. Choi, S. Y. Ryu, J. K. Kim, D. U. Kim, G. H. Kim, and K. S. Chang, "High-speed thermoreflectance microscopy using charge-coupled device-based Fourier-domain filtering", Opt. Lett., vol. 38, no. 18, pp. 3581-3584, (2013). https://doi.org/10.1364/OL.38.003581
  22. P. M. Mayer, D. Luerssen, R. J. Ram, and J. A. Hudgings, "Theoretical and experimental investigation of the thermal resolution and dynamic range of CCD-based thermoreflectance imaging", J. Opt. Soc. Am. A, vol. 24, no. 4, pp. 1156-1163, (2007). https://doi.org/10.1364/JOSAA.24.001156
  23. L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, "Stochastic resonance", Rev. Mod. Phys., vol. 70, no. 1, p. 223, (1998). https://doi.org/10.1103/RevModPhys.70.223
  24. D. Luerssen, J. A. Hudgings, P. M. Mayer, and R. J. Ram, "Nanoscale thermoreflectance with 10mK temperature resolution using stochastic resonance", in 2005 21st Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2005: IEEE, pp. 253-258, (2005).
  25. M. G. Burzo, P. L. Komarov, and P. E. Raad, "Noncontact transient temperature mapping of active electronic devices using the thermoreflectance method", IEEE Trans. Compon. Packag. Technol., vol. 28, no. 4, pp. 637-643, (2005). https://doi.org/10.1109/TCAPT.2005.859738
  26. D. Wang, Z. Liu, L. Zheng, and W. Liu, "A high-resolution thermoreflectance imaging technique based on visible light", in 2019 20th Int. Conf. Electron. Packag. Technol., 2019: IEEE, pp. 1-5, (2019).
  27. S. Sandell, E. Chavez-Angel, A. El Sachat, J. He, C. M. Sotomayor Torres, and J. Maire, "Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures", J. Appl. Phys., vol. 128, no. 13, p. 131101, (2020). https://doi.org/10.1063/5.0020239
  28. A. Ziabari, P. Torres, B. Vermeersh, Y. Xuan, X. Cartoixa, A. Torello, J. H. Bahk, Y. R. Koh, M. Parsa, P. D. Ye, F. X. Alvarez, and A. Shakouri, "Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices", Nat. Commun., vol. 9, no. 1, pp. 1-7, (2018). https://doi.org/10.1038/s41467-017-02088-w
  29. G. Tessier, S. Hole, and D. Fournier, "Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths", Appl. Phys. Lett., vol. 78, no. 16, pp. 2267-2269, (2001). https://doi.org/10.1063/1.1363696
  30. D. U. Kim, K. S. Park, C. B. Jeong, G. H. Kim, and K. S. Chang, "Quantitative temperature measurement of multi-layered semiconductor devices using spectroscopic thermoreflectance microscopy", Opt. Express, vol. 24, no. 13, pp. 13906- 13916, (2016). https://doi.org/10.1364/OE.24.013906
  31. G. Tessier, M. L. Polignano, S. Pavageau, C. Filloy, D. Fournier, F. Cerutti, and I. Mica, "Thermoreflectance temperature imaging of integrated circuits: calibration technique and quantitative comparison with integrated sensors and simulations", J. Phys. D: Appl. Phys., vol. 39, no. 19, p. 4159, (2006). https://doi.org/10.1088/0022-3727/39/19/007
  32. J.-H. Bahk and A. Shakouri, "Ultra-fast thermoreflectance imaging for electronic, optoelectronic, and thermal devices", in 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), 2019: IEEE, pp. 1-7, (2019).
  33. D. Kendig, G. Pavlidis, S. Graham, J. Reiter, M. Gurr, D. Altman, S. Huerster, and A. Shakouri, "UV thermal imaging of RF GaN devices with GaN resistor validation", in 2018 91st ARFTG Microwave Measurement Conference (ARFTG), 2018: IEEE, pp. 1-4, (2018).
  34. A. Ziabari, J. H. Bahk, Y. Xuan, P. D. Ye, D. Kendig, K. Yazawa, P. G. Burke, H. Lu, A. C. Gossard, and A. Shakouri, "Sub-diffraction limit thermal imaging for HEMT devices", in 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), 2015: IEEE, pp. 82-87, (2015).
  35. C. Matei, P. Aaen, and D. Kending, "High-resolution thermoreflectance imaging of GaN power microwave transistors. invited paper", in ARMMS RF & Microwave Society, 2017: University of Surrey, (2017).
  36. K. Maize, G. Pavlidis, E. Heller, L. Yates, D. Kendig, S. Graham, and A. Shakouri, "High resolution thermal characterization and simulation of power AlGaN/GaN HEMTs using micro-Raman thermography and 800 picosecond transient thermoreflectance imaging", in 2014 IEEE Compd. Semicond. Integr. Circuit Symp., 2014: IEEE, pp. 1-8, (2014).
  37. F. F. Oettinger, D. L. Blackburn, and S. Rubin, "Thermal characterization of power transistors", IEEE Trans. Electron Devices, vol. 23, no. 8, pp. 831-838, (1976). https://doi.org/10.1109/T-ED.1976.18495
  38. P. Spirito, G. Breglio, V. d'Alessandro, and N. Rinaldi, 'Thermal instabilities in high current power MOS devices: experimental evidence, electro-thermal simulations and analytical modeling", in 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No. 02TH8595), 2002, vol. 1: IEEE, pp. 23-30, (2002).
  39. K. Maize, A. Ziabari, W. D. French, P. Lindorfer, B. OConnell, and A. Shakouri, "Thermoreflectance CCD imaging of self-heating in power MOSFET arrays", IEEE Trans. Electron Devices, vol. 61, no. 9, pp. 3047-3053, (2014). https://doi.org/10.1109/TED.2014.2332466
  40. D. Shvydka, J. Rakotoniaina, and O. Breitenstein, "Lock-in thermography and nonuniformity modeling of thin-film CdTe solar cells", Appl. Phys. Lett., vol. 84, no. 5, pp. 729-731, (2004). https://doi.org/10.1063/1.1645322
  41. D. Kendig, J. Christofferson, G. B. Alers, and A. Shakouri, "Application of thermoreflectance imaging to identify defects in photovoltaic solar cells", in 2010 26th Annu. IEEE Semicond. Therm. Meas. Manage. Symp., 2010: IEEE, pp. 245- 248, (2010).
  42. S. Lal, S. E. Clare, and N. J. Halas, "Nanoshell-enabled photothermal cancer therapy: impending clinical impact", Acc. Chem. Res., vol. 41, no. 12, pp. 1842-1851, (2008). https://doi.org/10.1021/ar800150g
  43. H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices", Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp. 1-11, (2011).
  44. D. Wang, Y. R. Koh, Z. A. Kudyshev, K. Maize, A. V. Kildishev, A. Boltasseva, V. M. Shalaev, and A. Shakouri, "Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance", Nano Lett., vol. 19, no. 6, pp. 3796-3803, (2019). https://doi.org/10.1021/acs.nanolett.9b00940