DOI QR코드

DOI QR Code

Resistive Switching Properties of N and F co-doped ZnO

  • Kim, Minjae (Department of Materials Science and Engineering, Yonsei University) ;
  • Kang, Kyung-Mun (Department of Materials Science and Engineering, Yonsei University) ;
  • Wang, Yue (Department of Materials Science and Engineering, Yonsei University) ;
  • Chabungbam, Akendra Singh (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Dong-eun (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Hyung Nam (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2022.05.17
  • Accepted : 2022.06.30
  • Published : 2022.06.30

Abstract

One of the most promising emerging technologies for the next generation of nonvolatile memory devices based on resistive switching (RS) is the resistive random-access memory mechanism. To date, RS effects have been found in many transition metal oxides. However, no clear evidence has been reported that ZnO-based resistive transition mechanisms could be associated with strong correlation effects. Here, we investigated N, F-co-doped ZnO (NFZO), which shows bipolar RS. Conducting micro spectroscopic studies on exposed surfaces helps tracking the behavioral change in systematic electronic structural changes during low and high resistance condition of the material. The significant difference in electronic conductivity was observed to attribute to the field-induced oxygen vacancy that causes the metal-insulator Mott transition on the surface. In this study, we showed the strong correlation effects that can be explored and incorporated in the field of multifunctional oxide electrons devices.

Keywords

Acknowledgement

This material is based upon work supported by the National Research Foundation of Korea funded by the Korea government (MSIT) (grant 2019R1A2C2087604). Experiments at PLS were supported in part by MEST and POSTECH.

References

  1. R. Waser, R. Dittmann, G. Staikov, K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges", Advanced Materials, 21(25-26), 2632-2663 (2009). https://doi.org/10.1002/adma.200900375
  2. A. Sawa, "Resistive Switching in Transition Metal Oxides", Materialstoday, 11(6), 28-36 (2008).
  3. M. J. Rozenberg, I. H. Inoue, M. J. Sanchez, "Nonvolatile Memory with Multilevel Switching: A Basic Model", Phys. Rev. Lett., 92(17), 178302 (2004). https://doi.org/10.1103/PhysRevLett.92.178302
  4. A. Odagawa, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, T. Kanno, H. Adachi, "Colossal Electroresistance of a Pr0.7Ca0.3MnO3 Thin Film at Room Temperature", Phy. Rev. B, 70(22), 224403 (2004). https://doi.org/10.1103/physrevb.70.224403
  5. A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, "Hysteretic Current-voltage Characteristics and Resistance Switching at a Rectifying Ti/Pr0.7Ca0.3MnO3 Interface", Appl. Phys. Lett., 85(18), 4073 (2004). https://doi.org/10.1063/1.1812580
  6. T. Oka, N. Nagaosa, "Interfaces of Correlated Electron Systems: Proposed Mechanism for Colossal Electroresistance", Phy. Rev. Lett., 95(26-31), 266403 (2005). https://doi.org/10.1103/PhysRevLett.95.266403
  7. K. Szot, W. Speier, G. Bihlmayer, R. Waser, "Switching the Electrical Resistance of Individual Dislocations in Single-crystalline SrTiO3", Nature Materials, 5, 312-320 (2006). https://doi.org/10.1038/nmat1614
  8. Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, A. Ignatiev, "Evidence for an Oxygen Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-Metal Oxides", Phys. Rev. Lett., 98(14), 146403 (2007). https://doi.org/10.1103/PhysRevLett.98.146403
  9. R. Fors, S. I. Khartsev, A. M. Grishin, "Giant Resistance Switching in Metal-insulator-manganite Junctions: Evidence for Mott Transition", Phys. Rev. B, 71(4), 045305 (2005). https://doi.org/10.1103/physrevb.71.045305
  10. M. J. Rozenberg, I. H. Inoue, M. J. Sanchez, "Strong Electron Correlation Effects in Nonvolatile Electronic Memory Devices", Appl. Phys. Lett., 88(3), 033510 (2006). https://doi.org/10.1063/1.2164917
  11. J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, Ch. Niedermayer, "Systematic Study of Insulator-metal Transitions in Perovskites RNiO3 (R=Pr, Nd, Sm, Eu) Due to Closing of Charge-transfer Gap", Phys. Rev. B, 45(14), 8209 (1992). https://doi.org/10.1103/physrevb.45.8209
  12. J. Zaanen, G. A. Sawatzky, and J. W. Allen, "Band Gaps and Electronic Structure of Transition-metal Compounds", Phys. Rev. Lett., 55(4), 418 (1985). https://doi.org/10.1103/PhysRevLett.55.418
  13. Y. J. Choi, H. H. Park, "A Simple Approach to the Fabrication of Fluorine-doped Zinc Oxide Thin Films by Atomic Layer Deposition at Low Temperatures and an Investigation into the Growth Mode", Journal of Materials Chemistry C, 2(1), 98-108 (2014) https://doi.org/10.1039/C3TC31478B
  14. Y. Wang, M. Kim, M. A. Rehman, A. S. Chabungbam, D. E. Kim, H. S. Lee, I. Kymissis, H. H. Park, "Bipolar Resistive Switching in Lanthanum Titanium Oxide and an Increased On/Off Ratio Using an Oxygen-Deficient ZnO Interlayer", ACS Applied Materials & Interfaces, 14(15), 17682-17690 (2022). https://doi.org/10.1021/acsami.2c03451
  15. H. L. Ju, H. C. Sohn, K. M. Krishnan, "Evidence for O 2p Hole-Driven Conductivity in La1-xSrxMnO3 (0 ≤ x ≤ 0.7) and La0.7Sr0.3MnOz Thin Films", Phys. Rev. Lett., 79(17), 3230 (1997). https://doi.org/10.1103/PhysRevLett.79.3230
  16. M. Imada, A. Fujimori, Y. Tokura, "Metal-insulator Transitions", Rev. Mod. Phys., 70(4), 1039 (1998). https://doi.org/10.1103/RevModPhys.70.1039
  17. A. J. Millis, "Lattice Effects in Magnetoresistive Manganese Perovskite", Nature, 392, 147-150 (1998). https://doi.org/10.1038/32348
  18. S. E. Kim, J. G. Lee, L. Ling, S. E. Liu, H. K. Lim, V. K. Sangwan, M. C. Hersam, H. S. Lee, "Sodium-Doped Titania Self-Rectifying Memristors for Crossbar Array Neuromorphic Architectures", Advanced Materials, 34(6), 2106913 (2022). https://doi.org/10.1002/adma.202106913
  19. S. Hong, T. Choi, J. H. Jeon, Y. Kim, H. Lee, H. Y. Joo, I. Hwang, J. S. Kim, S. O. Kang, S. V. Kalinin, B. H. Park, "Large Resistive Switching in Ferroelectric BiFeO3 Nano-Island Based Switchable Diodes", Advanced Materials, 25(16), 2339-2343 (2013). https://doi.org/10.1002/adma.201204839
  20. Ch. Jooss, L. Wu, T. Beetz, R. F. Klie, M. Beleggia, M. A. Schofield, S. Schramm, J. Hoffmann, Y. Zhu, "Polaron Melting and Ordering as Key Mechanisms for Colossal Resistance Effects in Manganites", PNAS, 104(34), 13597-13602 (2007). https://doi.org/10.1073/pnas.0702748104
  21. J. Lee, H. Choi, D. Seong, J. Yoon, J. Park, S. Jung, W. Lee, M. Chang, C. Cho, H. Hwang, "The Impact of Al Interfacial Layer on Resistive Switching of La0.7Sr0.3MnO3 for Reliable ReRAM Applications", Microelectronic Engineering, 86(7-9), 1933-1935 (2009). https://doi.org/10.1016/j.mee.2009.03.017
  22. S. Q. Liu, N. J. Wu, A. Ignatiev, "Electric-pulse-induced Reversible Resistance Change Effect in Magnetoresistive Films", Appl. Phys. Lett. 76(19), 2749 (2000). https://doi.org/10.1063/1.126464
  23. K. Ayeb, N. Moussa, M. F. Nsib, S. G. Leonardi, G. Neri, "NO2 Sensing Properties of N-, F-and NF Co-doped ZnO Nanoparticles", Materials Science and Engineering: B, 263, 114870 (2021). https://doi.org/10.1016/j.mseb.2020.114870
  24. P. Wang, X. Li, S. Fan, X. Chen, M. Qin, D. Long, M. O. Tade, S. Liu, "Impact of Oxygen Vacancy on Piezo-catalytic Activity of BaTiO3 Nanobelt", Applied Catalysis B: Environmental, 279, 119340 (2020). https://doi.org/10.1016/j.apcatb.2020.119340