Acknowledgement
This material is based upon work supported by the National Research Foundation of Korea funded by the Korea government (MSIT) (grant 2019R1A2C2087604). Experiments at PLS were supported in part by MEST and POSTECH.
References
- R. Waser, R. Dittmann, G. Staikov, K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges", Advanced Materials, 21(25-26), 2632-2663 (2009). https://doi.org/10.1002/adma.200900375
- A. Sawa, "Resistive Switching in Transition Metal Oxides", Materialstoday, 11(6), 28-36 (2008).
- M. J. Rozenberg, I. H. Inoue, M. J. Sanchez, "Nonvolatile Memory with Multilevel Switching: A Basic Model", Phys. Rev. Lett., 92(17), 178302 (2004). https://doi.org/10.1103/PhysRevLett.92.178302
- A. Odagawa, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, T. Kanno, H. Adachi, "Colossal Electroresistance of a Pr0.7Ca0.3MnO3 Thin Film at Room Temperature", Phy. Rev. B, 70(22), 224403 (2004). https://doi.org/10.1103/physrevb.70.224403
- A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, "Hysteretic Current-voltage Characteristics and Resistance Switching at a Rectifying Ti/Pr0.7Ca0.3MnO3 Interface", Appl. Phys. Lett., 85(18), 4073 (2004). https://doi.org/10.1063/1.1812580
- T. Oka, N. Nagaosa, "Interfaces of Correlated Electron Systems: Proposed Mechanism for Colossal Electroresistance", Phy. Rev. Lett., 95(26-31), 266403 (2005). https://doi.org/10.1103/PhysRevLett.95.266403
- K. Szot, W. Speier, G. Bihlmayer, R. Waser, "Switching the Electrical Resistance of Individual Dislocations in Single-crystalline SrTiO3", Nature Materials, 5, 312-320 (2006). https://doi.org/10.1038/nmat1614
- Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, A. Ignatiev, "Evidence for an Oxygen Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-Metal Oxides", Phys. Rev. Lett., 98(14), 146403 (2007). https://doi.org/10.1103/PhysRevLett.98.146403
- R. Fors, S. I. Khartsev, A. M. Grishin, "Giant Resistance Switching in Metal-insulator-manganite Junctions: Evidence for Mott Transition", Phys. Rev. B, 71(4), 045305 (2005). https://doi.org/10.1103/physrevb.71.045305
- M. J. Rozenberg, I. H. Inoue, M. J. Sanchez, "Strong Electron Correlation Effects in Nonvolatile Electronic Memory Devices", Appl. Phys. Lett., 88(3), 033510 (2006). https://doi.org/10.1063/1.2164917
- J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, Ch. Niedermayer, "Systematic Study of Insulator-metal Transitions in Perovskites RNiO3 (R=Pr, Nd, Sm, Eu) Due to Closing of Charge-transfer Gap", Phys. Rev. B, 45(14), 8209 (1992). https://doi.org/10.1103/physrevb.45.8209
- J. Zaanen, G. A. Sawatzky, and J. W. Allen, "Band Gaps and Electronic Structure of Transition-metal Compounds", Phys. Rev. Lett., 55(4), 418 (1985). https://doi.org/10.1103/PhysRevLett.55.418
- Y. J. Choi, H. H. Park, "A Simple Approach to the Fabrication of Fluorine-doped Zinc Oxide Thin Films by Atomic Layer Deposition at Low Temperatures and an Investigation into the Growth Mode", Journal of Materials Chemistry C, 2(1), 98-108 (2014) https://doi.org/10.1039/C3TC31478B
- Y. Wang, M. Kim, M. A. Rehman, A. S. Chabungbam, D. E. Kim, H. S. Lee, I. Kymissis, H. H. Park, "Bipolar Resistive Switching in Lanthanum Titanium Oxide and an Increased On/Off Ratio Using an Oxygen-Deficient ZnO Interlayer", ACS Applied Materials & Interfaces, 14(15), 17682-17690 (2022). https://doi.org/10.1021/acsami.2c03451
- H. L. Ju, H. C. Sohn, K. M. Krishnan, "Evidence for O 2p Hole-Driven Conductivity in La1-xSrxMnO3 (0 ≤ x ≤ 0.7) and La0.7Sr0.3MnOz Thin Films", Phys. Rev. Lett., 79(17), 3230 (1997). https://doi.org/10.1103/PhysRevLett.79.3230
- M. Imada, A. Fujimori, Y. Tokura, "Metal-insulator Transitions", Rev. Mod. Phys., 70(4), 1039 (1998). https://doi.org/10.1103/RevModPhys.70.1039
- A. J. Millis, "Lattice Effects in Magnetoresistive Manganese Perovskite", Nature, 392, 147-150 (1998). https://doi.org/10.1038/32348
- S. E. Kim, J. G. Lee, L. Ling, S. E. Liu, H. K. Lim, V. K. Sangwan, M. C. Hersam, H. S. Lee, "Sodium-Doped Titania Self-Rectifying Memristors for Crossbar Array Neuromorphic Architectures", Advanced Materials, 34(6), 2106913 (2022). https://doi.org/10.1002/adma.202106913
- S. Hong, T. Choi, J. H. Jeon, Y. Kim, H. Lee, H. Y. Joo, I. Hwang, J. S. Kim, S. O. Kang, S. V. Kalinin, B. H. Park, "Large Resistive Switching in Ferroelectric BiFeO3 Nano-Island Based Switchable Diodes", Advanced Materials, 25(16), 2339-2343 (2013). https://doi.org/10.1002/adma.201204839
- Ch. Jooss, L. Wu, T. Beetz, R. F. Klie, M. Beleggia, M. A. Schofield, S. Schramm, J. Hoffmann, Y. Zhu, "Polaron Melting and Ordering as Key Mechanisms for Colossal Resistance Effects in Manganites", PNAS, 104(34), 13597-13602 (2007). https://doi.org/10.1073/pnas.0702748104
- J. Lee, H. Choi, D. Seong, J. Yoon, J. Park, S. Jung, W. Lee, M. Chang, C. Cho, H. Hwang, "The Impact of Al Interfacial Layer on Resistive Switching of La0.7Sr0.3MnO3 for Reliable ReRAM Applications", Microelectronic Engineering, 86(7-9), 1933-1935 (2009). https://doi.org/10.1016/j.mee.2009.03.017
- S. Q. Liu, N. J. Wu, A. Ignatiev, "Electric-pulse-induced Reversible Resistance Change Effect in Magnetoresistive Films", Appl. Phys. Lett. 76(19), 2749 (2000). https://doi.org/10.1063/1.126464
- K. Ayeb, N. Moussa, M. F. Nsib, S. G. Leonardi, G. Neri, "NO2 Sensing Properties of N-, F-and NF Co-doped ZnO Nanoparticles", Materials Science and Engineering: B, 263, 114870 (2021). https://doi.org/10.1016/j.mseb.2020.114870
- P. Wang, X. Li, S. Fan, X. Chen, M. Qin, D. Long, M. O. Tade, S. Liu, "Impact of Oxygen Vacancy on Piezo-catalytic Activity of BaTiO3 Nanobelt", Applied Catalysis B: Environmental, 279, 119340 (2020). https://doi.org/10.1016/j.apcatb.2020.119340