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The Cyr61/CTGF/NOV (CCN) family is dynamically expressed in various tissues, including the nervous system, 
from the prenatal period to adulthood. However, major studies have been conducted only in limited fields, such as the 

cardiovascular and muscular systems, skeletal development, and cancer. In addition, although the CCN family is a 
secretory protein, very few studies have described its mechanism of secretion. Recently, it has been suggested that 
overexpression of CCN3 or intracellular accumulation due to problems in the secretory pathway can inhibit neuronal 
axonal growth. In this review, we have briefly summarized the structure and characteristics of the CCN family and its 
related diseases, with particular emphasis on the secretory mechanism and modifiers of the CCN family, newly identified 
in the nervous system. 
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INTRODUCTION 

 

The Cyr61/CTGF/NOV (CCN) family consists of six 

members, CCN1 to CCN6, and the family is named after 

the initials of the first three members found among them: 

Cysteine-rich61 (CYR61, CCN1), connective tissue growth 

factor (CTGF, CCN2), and nephroblastoma overexpressed 

(NOV, CCN3). The three additional members are Wnt-

inducible secreted proteins WISP1 (CCN4), WISP2 (CCN5), 

and WISP3 (CCN6) (Holbourn et al., 2008; Krupska et al., 

2015). The CCN family is a secretory matricellular protein 

present in the extracellular matrix (ECM) that does not serve 

as a structural support for the ECM, but performs various 

regulatory functions by binding to cell surface receptors, 

activating intracellular signaling pathways, and increasing 

the intensity of cellular responses. These functions are also 

related to essential biological processes, such as the differen- 

tiation of endothelial cells, the initial development of skeletal 

bones, the initial formation of a tumor, and wound healing 

(Holbourn et al., 2008). In contrast, overexpression of many 

CCN family members has been observed in various cancers, 

including pancreatic, breast, and lung cancers (Kim et al., 

2018a). This suggests that abnormal expression levels of 

CCN proteins in cells may be linked to various diseases, 

including those of the nervous system. 
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Structure and molecular interactions of CCN family 

proteins 

The CCN family has a unique mosaic structure composed 

of modules that share functional identity. A general CCN 

protein consists of an N-terminal secretory signal peptide 

(SP) followed by four functional domains. (1) Insulin-like 

growth factor binding protein (IGFBP)-like domain, (2) 

von Willebrand factor type C (VWC) repeat domain, (3) 

thrombospondin type-1 (TSP-1) repeat domain, and (4) 

cysteine knot-containing (CT) domain. The six CCN family 

members share ~30-50% identity between their respective 

structures. However, in the case of CCN5, there is no CT 

domain, and CCN6 deficiencies 4 cysteine (Cys) residues 

among the 38 highly conserved Cys residues in the VWC 

domain. The N-termini (SP, IGFBP, VWC) and C-termini 

(TSP-1, CT) are connected by a variable hinge, and cleavage 

occurs easily in this region as it is vulnerable to proteolysis. 

In truncated molecules each domain displays biological 

functionality, and the function of an entire protein is deter- 

mined by the collaboration of each domain (Brigstock, 1999; 

Holbourn et al., 2008; Krupska et al., 2015). 

Each module or domain of the CCN protein interacts 

with a specific protein. The conserved structure of the CCN 

family members suggests the utilization of similar mech- 

anisms through which common receptors or factors interact 

to perform biological functions. CCN family members 

activate signaling pathways through direct binding of cell 

surface receptors and multiple co-receptors. Therefore, cell- 

or time-specific regulation is possible through a combination 

of various receptors. Additionally, CCN proteins can directly 

bind to growth factors and cytokines, thereby regulating their 

intrinsic biological activities (Chen and Lau, 2009; Jun and 

Lau, 2011) (Fig. 1). 

Expression and associated diseases of the CCN family 

proteins 

CCN1 is largely expressed in the heart, blood vessels, 

and blood during embryonic development (Kireeva et al., 

1997). Cardial expression in mice starts from E8.5, and 

continues until E10.5. Its expression is important for the 

development of the aorta and pulmonary trunk (Mo and 

Lau, 2006) CCN1 is strongly associated with cardiovascular 

disease. Most Ccn1 null mice embryos die between E11.5-

E14.5. Hemorrhage, placental defects, and chorioallantoic 

fusion have also been reported (Mo et al., 2002). In addition, 

Ccn1 null mice showed severe atrioventricular septal defects 

due to immaturity (Mo and Lau, 2006) and patients with 

such defects are shown to have a heterozygous missense 

mutation in CCN1 (Perrot et al., 2015). The Ccn1 gene is 

also expressed in the respiratory system, embryonic skeletal 

system, developing nervous system (spinal cord, mesen- 

cephalon, telencephalon), olfactory bulb, and embryonic 

epidermis (Latinkic et al., 2001). 

The expression pattern of CCN2 during development is 

Fig. 1. Structure of CCN family proteins and molecular inter-
actions. (A) Structure of CCN family members. SP, signal peptide;
IGFBP, insulin-like growth factor binding protein domain; VWC, 
von Willebrand factor type C repeat; TSP1, thrombospondin type-
1 repeat; CT, cysteine knot containing module. (B) CCN proteins 
physically interact with several extracellular matrix (ECM) proteins
such as fibronectin, growth factors and bone morphogenetic proteins
(BMPs). The individual modular domains mediate the interactions 
with specific proteins. Fibronectin is known to bind to the carboxy-
terminal domain while growth factors and BMPs bind to the amino-
terminal domain. CCN proteins also bind to and signal through 
several cell-surface receptors including several integrins, which 
function in concert with heparan sulphate proteoglycans (HSPGs) 
or low-density lipoprotein receptor-related proteins (LRPs) as co-
receptors in some contexts. IGF, insulin-like growth factor; TGFβ, 
transforming growth factor-β. Modified from Holbourn et al., 2008;
Chen and Lau, 2009; Jun and Lau, 2011. 
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similar to that of CCN1, and it appears at high levels in the 

endothelium, the cardiovascular system, and skeletal tissues 

(Hall-Glenn et al., 2012). In homozygous Ccn2 mutant mice, 

the normal bone skeleton of the chest is not formed, and 

the chest size is greatly reduced (Ivkovic et al., 2003). Ccn2 

mutant mice show cyanosis and dyspnea, and many die 

shortly after birth (Partridge et al., 2014). Lung hypoplasia 

results in decreased cell proliferation and increased cell death 

(Baguma-Nibasheka and Kablar, 2008), leading to growth 

retardation in the lungs of Ccn2 mutant mice. In Ccn2 

deficiency mice, vascular and skeletal defects develop at a 

later stage of development (Hall-Glenn et al., 2013). At the 

adult stage, Ccn2 mRNA is expressed in several organs, in- 

cluding the spleen, gastrointestinal tract, heart, testes, thymus, 

lung, skeletal muscle, kidney, and pancreas, but not in the 

central nervous system, liver, and peripheral leukocytes (Xu 

et al., 2000). Conversely, analysis of diseased tissues of 

human and animal models revealed enormous accumulation 

of CCN2 and extracellular matrix components in the fibrotic 

tissues. Thus, the etiological association of CCN2 in fibro-

proliferative disorders can be estimated (Leask et al., 2009). 

In relation to the nervous system, CCN2 expression level 

correlates with the progression of neurodegenerative diseases 

like Alzheimer's disease and amyotrophic lateral sclerosis 

(Ueberham et al., 2003; Zhao et al., 2005). 

During development, CCN3 is expressed at high levels 

in skeletal muscles, vascular smooth muscle cells, the central 

nervous system and chondrocytes (Su et al., 2001; Perbal, 

2015). CCN3 is involved in myogenesis, affecting the for- 

mation and stabilization of attachment structures that transmit 

force from the muscle to tendon (Lafont et al., 2005). In 

contrast, Ccn3-deficient mice develop normally until adult- 

hood and both males and females can reproduce (Shimoyama 

et al., 2010). Similarly, Ccn3 mutant mice deficient in the 

VWC domain displayed good health, albeit with mild skel- 

etal defects (Heath et al., 2008). 

During development, CCN4 is expressed in limited 

amounts in osteoblasts and osteoblastic progenitor cells 

(French et al., 2004). Adult stage CCN4 is expressed in a 

wide range of organs, including the epithelium, heart, kidney, 

lung, pancreas, placenta, ovaries, small intestine, spleen, and 

brain (Katoh and Katoh, 2005). A CCN4 variant, lacking 

the VWC domain has been described in a small number of 

human gastric cancer tissues and normal chondrocytes 

(Tanaka et al., 2001). Further, CCN4 protects against neuro- 

degeneration by inhibiting primary neuronal injury and 

apoptosis during oxygen glucose deprivation (Wang et al., 

2012). 

CCN5 is expressed in most embryonic stages, especially 

from E4.5, the very early implantation stage in the uterine 

wall (Myers et al., 2012). Ccn5-null mice and Ccn5-

overexpressing transgenic mice die because of improper 

implantation at or before the gastrulation stage (Jones et al., 

2007). CCN5 is present in several organs such as the kidney, 

ovary, brain, heart, and lung, and even in adult organs (Gray 

et al., 2007). It inhibits smooth muscle proliferation and 

migration in both cell culture and animal models (Lake and 

Castellot, 2003; Mason et al., 2004). In MCF-7 breast cancer 

lines, the expression of CCN5 is upregulated by estrogen 

and it functions as an oncogene (Ray et al., 2005). 

CCN6 is a critical protein involved in the keeping of 

human articular cartilage (Baker et al., 2012). Mutations in 

the human CCN6 gene causes progressive pseudorheumatoid 

dysplasia (pseudorheumatic dysplasia). This disease causes 

articular cartilage loss from infancy and multiple joint and 

bone abnormalities (Yu et al., 2015). In contrast, Ccn6 null 

mice do not show a clear abnormal phenotype (Yu et al., 

2015). CCN6 appears to be downregulated in invasive breast 

cancers and is thought to function as a CCN6 suppressing 

tumor (Leask and Abraham, 2006). 

Post-translational modifications of the CCN proteins for 

secretion 

Post-translational modifications (PTMs) of CCN proteins 

are important for regulating secretion and function. O-

fucosylation is a reaction in which fucose is attached to the 

hydroxyl group (O-linked) of a serine or threonine residue 

(Vasudevan and Haltiwanger, 2014). Protein O-fucosyltrans- 

ferase2 mediates O-fucosylation of CCN1 at the Thr242 

residue of the TSP1 domain leading to its secretion from the 

cell (Niwa et al., 2015). Glucosyl-galactosyl-hydroxylation, 

which rarely occurs in the Lys residue of collagen family 

proteins, is found on the Lys203 residue of CCN1 mediated 

by lysyl hydroxylase 3. This collagen-like glycosylation is 
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required for secretion (Ishizawa et al., 2019). N-glycosylation 

is also reported in CCN2 and CCN3 (Bohr et al., 2010) 

In a later study, it was confirmed that there was an N-

glycosylation modification in secreted CCN3. In addition, 

glycosylation of CCN3 also increases the migration and 

invasion of Jeg3 choriocarcinoma cells (Yang et al., 2011). 

Palmitoylation, a reversible PTM that attaches palmitate to 

cysteine residues via a thioester linkage (Resh, 2006), is 

known to occur on Cys241 located in the TSP-1 domain of 

CCN3, and is important for its extracellular secretion (Kim 

et al., 2018b). 

Palmitoylation is an important modification known in 

other secretory proteins similar to CCN3. In Wnt proteins, 

one of the typical secretory proteins, glycosylation and 

palmitoylation are known to aid in the secretion Komekado 

et al., 2007). Porcupine (PORCN), an acyltransferase, is an 

important factor regulating normal secretion and signaling of 

Wnt in vertebrates. PORCN induces palmitoylation of Wnt 

protein in the endoplasmic reticulum (ER) (palmitoylation 

at Ser209 is essential for secretion, but requires additional N-

glycosylation) (Mikels and Nusse, 2006; Gao and Hannoush, 

2014). Another secreted protein, sonic hedgehog (Shh), also 

requires palmitoylation for secretion. The Shh precursor that 

enters the ER for processing is separated into two fragments 

through autocleavage, and palmitate is linked to the N-

terminal cysteine residue of the N-terminal fragment by 

Hedgehog acyltransferase. Lipidated Shh is secreted from 

cells (Chamoun et al., 2001; Resh, 2021). 

zDHHC proteins may act as a palmitoylating enzymes of 

CCN proteins 

Palmitoylation of proteins is associated with various func- 

tions, such as membrane attachment, intracellular trafficking, 

protein localization, and protein secretion. The largest family 

of palmitoyl acyltransferases mediating this reaction is the 

aspartate-histidine-histidine-cysteine (DHHC) family, with 

a variant Cys2His2 zinc finger motif (Putilina et al., 1999; 

Greaves and Chamberlain, 2011). The DHHC family is a 

heterogeneous multi-pass transmembrane protein located in 

various compartments within the cell, such as the ER, Golgi 

Fig. 2. Secretory mechanism of CCN3 via zDHHC22 in neurons. (A) Palmitoylation of CCN3 by zDHHC22. (B) Inhibition of neuronal 
axon growth in mouse cortical neurons induced by inhibition of CCN3 secretion (Red: Normal CCN3-secreting Neuron, Green: CCN3-
secreted Neuron). (C) The secreted protein CCN3 synthesized in neurons passes through the Golgi apparatus and the endoplasmic 
reticulum, and palmitoylation occurs at the Cys241 residue by zDHHC22. Palmitoylated CCN3 protein is secreted out of the cell, 
however, loss of secretion leads to its accumulation inside the nerve cell and induces neuronal defects. 
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apparatus, endosomes, and plasma membrane (Globa and 

Bamji, 2017). The palmitoylation at Cys241 of the TSP-1 

domain of CCN3 was found to be mediated by zinc finger 

DHHC type containing 22 (zDHHC22). zDHHC22 had the 

highest mRNA expression among ZDHHC family members 

in the neuroblast and Neuro2a cell lines, and directly binds 

to CCN3 (Kim et al., 2018b). Absence of extracellular CCN3 

secretion leads to inhibition of neuronal outgrowth (Fig. 2). 

This suggest that zDHHC22 is needed for the efficient secre- 

tion of CCN3 during the development of neurons, further 

suggesting a role for the zDHHC family in the secretion of 

other CCN proteins. 

Furthermore, zDHHC mutations also induce a phenotype 

that can be linked to the disease (Chamberlain and Shipston, 

2015). zDHHC5 mutant mice show partial embryonic 

lethality (Li et al., 2010) while zDHHC8 knockout mice dis- 

played decreased synapse, spine, and dendritic complexity 

(Mukai et al., 2008). zDHHC13 mutants show decreased 

lifespan, decreased size, osteoporosis, and muscle loss 

(Saleem et al., 2010) and zDHHC17 mutant mice resulted 

in weight loss and decreased brain size (Singaraja et al., 2011). 

Since this is not a phenotype limited only to neurons, it 

shows that the CCN substrate-zDHHC enzyme action can 

also occur in various tissues and cells. 

 

CONCLUSIONS 

 

The processes and mechanisms involved in CCN and its 

signaling have been extensively studied because they act 

on numerous cellular processes related to various aspects 

of development. In particular, changes in the intracellular 

expression levels of CCN protein have been shown to be 

associated with various diseases. Although recent studies 

have shown that palmitoylation of CCN3 is important for 

the regulation of extracellular secretion, further research is 

required to determine whether this modification also regu- 

lates the secretion of other CCN proteins. Furthermore, evi- 

dence of in vivo CCN3 palmitoylation induced by zDHHC22 

needs to be presented. Considering the expression pattern of 

CCN in a time- and tissue-dependent manner, it is important 

to understand the mechanism of several diseases caused by 

CCN in relation with the mechanism of palmitoylation of 

each member. 

 

Abbreviations 

CCN Cyr61/CTGF/NOV 

CYR61 Cysteine-rich61 

CTGF connective tissue growth factor 

NOV nephroblastoma overexpressed 

WISP1 Wnt-inducible secreted proteins 

ECM extracellular matrix 

SP signal peptide 

IGFBP insulin-like growth factor binding protein 

VWC von Willebrand factor type C 

TSP-1 thrombospondin type-1 

CT cysteine knot-containing 

ER endoplasmic reticulum 

PORCN porcupine O-acyltransferase 

Shh sonic hedgehog 

DHHC aspartate-histidine-histidine-cysteine 

PTM Post-translational modifications 
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