DOI QR코드

DOI QR Code

Anti-inflammatory and Anti-oxidative Activities for the Subcritical Water Extract of Camellia japonica Flowers

동백 꽃 아임계 수 추출물의 항염 및 항산화 활성

  • Received : 2022.03.30
  • Accepted : 2022.05.24
  • Published : 2022.06.30

Abstract

In this study, the anti-inflammatory and anti-oxidant efficacy of camellia subcritical water extracts (SWE, 135 ~ 180 ℃, 70 bar) was compared with 70% ethanol and hot water extracts. Among these extracts, the yield (57.9%) of the subcritical water extract, which was extracted under the condition of 180 ℃ and 70 bar was the highest, which increased the extraction yield by more than two times compared to the hot water extract (28.1%). The results of the nitric oxide (NO) production inhibition activity experiment using RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS) showed that subcritical water extracts had superior effects in inhibiting the production of NO without cytotoxicity than 70% ethanol and hot water extracts. In addition, DPPH and ABTS+ radical scavenging activity experiments showed that the radical scavenging activity of subcritical water extract was similar to that of 70% ethanol and hot water extract. Moreover, the content of gallic acid was determined by HPLC and the quantity was about 1.62 mg/g for the SWE (165 ℃, 70 bar), which was the highest among all of the extracts. Based on these results, it is concluded the SWE of C. japonica flowers could be potentially applicable as anti-inflammatory and anti-oxidative ingredients in cosmetic formulations.

본 연구에서는 동백 꽃 아임계 수 추출물(SWE, 135 ~ 180 ℃, 70 bar 조건)의 항염 및 항산화 효능을 70% 에탄올 및 열수 추출물과 비교 분석하였다. 이들 추출물 중 180 ℃, 70 bar의 조건으로 추출한 아임계수 추출물의 수율(57.9%)이 가장 높게 나타났으며, 이는 열수 추출물(28.1%)에 비해서 2배 이상 추출 수율이 증가하였다. Lipopolysaccharide (LPS)로 자극된 RAW 264.7 대식세포를 이용한 nitric oxide (NO) 생성 억제 활성 실험 결과, 아임계 수 추출물이 세포 독성 없이 NO의 생성을 저해시키는 효과가 70% 에탄올 및 열수 추출물보다 우수함을 확인하였다. 또한 DPPH 및 ABTS+ 라디칼 소거 활성 실험 결과, 아임계 수 추출물의 라디칼 소거 활성이 70% 에탄올 및 열수 추출물과 유사하게 나타났다. 동백 꽃의 주성분인 gallic acid의 함량을 HPLC를 이용하여 분석한 결과, 아임계 수 추출물(165 ℃, 70 bar)에서 함량이 1.62 mg/g으로 가장 높게 분석되었다. 이상의 연구결과를 바탕으로 동백 꽃 아임계 수 추출물은 항염 및 항산화 효과를 갖는 천연 화장품 소재로써 활용이 가능할 것이라 사료된다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부와 중소기업기술정보진흥원의 "지역특화산업육성+(R&D, S3083335)"사업의 지원을 받아 수행된 연구결과임..

References

  1. J. Han, Master's Thesis Dissertation, Chung-Ang Univ., Seoul, Korea (2011).
  2. D. H. Kim, S. J. Park, J. Y. Jung, S. C. Kim, and S. H. Byun, Anti-inflammatory effects of the aqueous extract of Hwangnyeonhaedok-tang in LPS-activated macrophage cells, Kor. J. Herbol., 24(4), 39 (2009).
  3. A. S. Chauhan, P. S. Negi, and R. S. Ramteke, Antioxidant and antibacterial activities of aqueous extract of Seabuckthorn (Hippophae rhamnoides) seeds, Fitoterapia, 78(7-8), 590 (2007). https://doi.org/10.1016/j.fitote.2007.06.004
  4. Y. F. Leung, P. O. S. Tam, W. S. Lee, D. S. C. Lam, H. F. Yam, B. J. Fan, C. C. Y. Tham, J. K. H. Chua, and C. P. Pang, The dual role of dexamethasone on anti-inflammation and outflow resistance demonstrated in cultured human trabecular meshwork cells, Mol. Vis., 9, 425 (2003).
  5. D. Rocksen, B. Lilliehook, R. Larsson, T. Johansson, and A. Bucht, Differential anti-inflammatory and anti oxidative effects of dexamethasone and N-acethylcysteine in endotoxininduced lung inflammation. Clin. Exp. Immunol., 122(2), 249 (2000).
  6. N. K. Kim, M. H. Kim, C. S. Yoon, and S. W. Choi, Studies on the anti-inflammatory activity of Paulownia coreana Uyeki leaf extract. J. Soc. Cosmet. Sci. Korea, 32(4), 241 (2006).
  7. D. S. Hah, C. H. Kim, G. S. Kim, E. G. Kim, and J. S. Kim, Antioxidative effects of traditional medicinal plants on lipid peroxidation, Korean J. Vet. Res., 45(3), 341 (2005).
  8. J. E. Seo, E. S. Hwang, and G. H. Kim, Antioxidaitve and differentiation effects of Artemisia capillaris T. extract on hydrogen Peroxide-induced oxidative damage of MC3T3-E1 osteoblast cells, J. Korean Soc. Food Sci. Nutr., 40(11), 1532 (2011). https://doi.org/10.3746/JKFN.2011.40.11.1532
  9. S. R. Ko, S. C. Kim, and K. J. Choi, Extract yields and saponin contents of red ginseng extracts prepared with various concentrations of ethanol, Kor. J. Pharmacogn., 23(1), 24 (1992).
  10. X. Li, J. S. Han, Y. J. Park, S. J. Kang, J. S. Kim, K. Y. Nam, K. T. Lee, and J. E. Choi, Extracting conditions for promoting ginsenoside contents and taste of red ginseng water extract, Korean J. Crop Sci., 54(3), 287 (2009).
  11. S. H. Lee, J. I. Kang, and S. Y. Lee, Saponin composition and physico-chemical properties of Korean red ginseng extract as affected by extracting condition, J. Korean Soc. Food Sci. Nutr., 37(2), 256 (2008). https://doi.org/10.3746/JKFN.2008.37.2.256
  12. Y. J. Ra, Y. W. Lee, J. D. Kim, and K. H. Row, Supercritical fluid extraction of catechin compounds from green tea, Korean J. Biotechnol. Bioeng., 16(4), 327 (2001).
  13. R. M. Smith, Extractions with superheated water, J. Chromatogr. A, 975(1), 31 (2002). https://doi.org/10.1016/S0021-9673(02)01225-6
  14. M. J. Piao, E. S. Yoo, Y. S. Koh, H. K. Kang, J. Kim, Y. J. Kim, H. H. Kang, and J. W. Hyun, Antioxidant effects of the ethanol extract from flower of Camellia japonica via scavenging of reactive oxygen species and induction of antioxidant enzymes, Int. J. Mol. Sci., 12(4), 2618 (2011). https://doi.org/10.3390/ijms12042618
  15. Y. O. Seo and C. D. Kim, Fusion-complex activity of Camellia extract, Journal of Digital Convergence, 13(7), 431 (2015). https://doi.org/10.14400/JDC.2015.13.7.431
  16. S. Y. Lee, E. J. Hwang, G. H. Kim, Y. B. Choi, C. Y. Lim, and S. M. Kim, Antifungal and antioxidant activities of extracts from leaves and flowers of Camellia japonica L., Korean J. Medicinal Crop Sci., 13(3 ), 93 (2005).
  17. S. M. Kim, E. J. Hwang, B. S. Pyo, and S. Y. Lee, Antioxidant and antimicrobial activities of the extracts from native Camellia japonica in Korea, Korean J. Plant. Res., 17(3), 314 (2004).
  18. H. H. Lee, J. Y. Cho, J. H. Moon, and K. H. Park, Isolation and identification of antioxidative phenolic acids and flavonoid glycosides from Camellia japonica flowers, Hort. Environ, Biotechnol., 52(3), 270 (2011). https://doi.org/10.1007/s13580-011-0157-x
  19. J. Y. Cho, H. J. Ryu, S. H. Ji, J. H. Moon, K. H. Jung, and K. H. Park, Phenolic compounds from the flower buds of Camellia japonica, Food Sci. Biotechnol., 18(3), 766 (2009).
  20. S. Nakamura, T. Moriura, S. Park, K. Fujimoto, T. Matsumoto, T. Ohta, H. Matsuda, and M. Yoshikawa, Melanogenesis inhibitory and fibroblast proliferation accelerating effects of noroleanane- and oleanane-type triterpene oligoglycosides from the flower buds of Camellia japonica, J. Nat. Prod., 75(8), 1425 (2012). https://doi.org/10.1021/np3001078
  21. M. S. Blois, Antioxidant determination by the use of a stable free radical, Nature, 181, 1199 (1958). https://doi.org/10.1038/1811199a0
  22. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans, Antixoidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med., 26(9-10), 1231 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  23. M. L. McDaniel, G. Kwon, J. R. Hill, C. A. Marshall, and J. A. Corbett, Cytokines and nitric oxide in islet inflammation and diabetes, Proc. Soc. Exp. Biol. Med., 211(1), 24 (1996). https://doi.org/10.3181/00379727-211-43950D
  24. A. L. Jeon, J. E. Kim, and N. H. Lee, Whitening and anti-inflammatory constituents from the extract of Citrullus lanatus vines, J. Soc. Cosmet. Sci. Korea, 43(1), 53 (2017). https://doi.org/10.15230/SCSK.2017.43.1.53
  25. S. H. Park, J. E. Kim, and N. H. Lee, Isolation and evaluation of anti-oxidative constituents from the extract of Ficus erecta var. sieboldii King leaves, J. Soc. Cosmet. Sci. Korea, 42(4), 321 (2016). https://doi.org/10.15230/SCSK.2016.42.4.321
  26. G. C. Yen, P. D. Duh, and H. L. Tasi, Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid, Food Chemistry, 79(3), 307 (2002). https://doi.org/10.1016/S0308-8146(02)00145-0
  27. C. S. Seo, S. J. Jeong, S. R. Yoo, N. R. Lee, and H. K. Shin, Quantitative analysis and in vitro anti-inflammatory effects of gallic acid, ellagic acid, and quercetin from Radix Sanguisorbae, Pharmacogn. Mag., 12(46), 104 (2016). https://doi.org/10.4103/0973-1296.177908
  28. A. P. Subramanian, A. A. John, M. V. Vellayyapan, A. Balaji, S. K. Jaganathan, E. Supriyanto, and M. Yusof, Gallic acid: Prospects and the molecular mechanisms of its anticancer activity, RSC Adv., 45(5), 35608 (2015).
  29. M. K. Rasool, E. P. Sabina, S. R. Ramya, P. Preety, S. Patel, N. Mandal, P. P. Mishra, and J. Samuel, Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice, J. Pharm. Pharmacol., 62(5), 638 (2010). https://doi.org/10.1211/jpp/62.05.0012
  30. Y. J. Kim, Antimelanogenic and antioxidant properties of gallic acid, Biol. Pharm. Bull., 30(6), 1052 (2007). https://doi.org/10.1248/bpb.30.1052