DOI QR코드

DOI QR Code

Improvement of Antifungal Activity of for Water-Dispersed Cosmetic Formulations

수분산 제형의 화장품에 대한 항진균력 향상

  • Received : 2022.05.01
  • Accepted : 2022.06.25
  • Published : 2022.06.30

Abstract

In order to prevent microbial contamination and safely use cosmetics, it is essential to possess preservative power. In this study, the antifungal effect was confirmed by improving the preservative system of the aqueous dispersion formulation, which has a weak preservative power against fungi, and various preservative systems were established to strengthen the preservative power against fungi. Five kinds of raw materials (sodium anisate, p-anisic acid, caprylhydroxamic acid, o-cymen-5-ol, hydroxyacetophenone) that have a benzene ring structure having a hydroxyl group and exist as protonated form in cosmetic formulations expected to improve antifungal activity in cosmetics were selected, and the minimum growth inhibitory concentration of the raw materials was determined through MIC assay. It was confirmed that the preservative power against mold was improved through the preservative efficacy test of 4 types of water dispersion formulations (cream, lotion, toner, and sun cream) in which 4 types of raw materials showing antimicrobial activity against mold were added to the preservative system. When p-anisic acid was used, it was confirmed that the preservative activity against mold was strengthened without the effect of inhibiting the preservative power against bacteria and yeast in all four formulations.

미생물오염을 막아 화장품을 안전하게 사용하기 위해서는 방부력의 확보가 필수적이다. 본 연구에서는, 곰팡이에 대한 방부력이 취약한 수분산 제형의 방부시스템을 개선하여 항진균효과를 확인하고 다양한 방부시스템을 정립하여 진균에 대한 보존력을 강화하고자 하였다. 하이드록시기를 갖는 벤젠고리 구조를 가지며 화장품 제형 내에서 protonated form으로 존재해 항진균력을 향상시킬 것으로 예상되는 물질 5 종 아니스산나트륨, p-아니스산, 카프릴하이드록삼산, o-시멘-5-올, 하이드록시아세토페논을 선정하였고 minimal inhibitory concentration (MIC) assay를 통해 원료의 최소생육 저해농도를 확인하였다. 곰팡이에 대한 항균력을 보인 원료를 방부시스템에 추가한 수분산 제형에 대해 방부력테스트를 하여 곰팡이에 대한 방부력이 향상됨을 확인하였다. p-아니스산을 사용한 경우, 4 가지 제형 모두에서 세균과 효모균에 대한 방부력 저해 효과 없이 곰팡이에 대한 방부력이 강화되는 것을 확인하였다.

Keywords

References

  1. N. Halla, I. P. Fernandes, S. A. Heleno, P. Costa, Z.Boucherit-Otmani, K. Boucherit, A. E. Rodrigues, I. C. F. R. Ferreira, and M. F. Barreiro, Cosmetics preservation: A review on present strategies, Molecules, 23(7), 1571 (2018). https://doi.org/10.3390/molecules23071571
  2. A. Varvaresou, S. Papageorgiou, E. Tsirivas, E. Protopapa, H. Kintziou, V. Kefala, and C. Demetzos, Self-preserving cosmetics, Int. J. Cosmet. Sci., 31(3), 163 (2009). https://doi.org/10.1111/j.1468-2494.2009.00492.x
  3. A. Kerdudo, F. Fontaine-Vive, A. Dingas, C. Faure, and X. Fernandez, Optimization of cosmetic preservation: water activity reduction, Int. J. Cosmet. Sci., 37(1), 31 (2014). https://doi.org/10.1111/ics.12164
  4. D. K. Brannan and J. C. Dille, Type of closure prevents microbial contamination of cosmetics during consumer use, Appl. Environ. Microbiol., 56(5), 1476 (1990). https://doi.org/10.1128/aem.56.5.1476-1479.1990
  5. J. Wang, Y. Liu, W. R. Kam, Y. Li, and D. A. Sullivan, Toxicity of the cosmetic preservatives parabens, phenoxyethanol and chlorphenesin on human meibomian gland epithelial cells, Exp. Eye Res., 196, 108057 (2020). https://doi.org/10.1016/j.exer.2020.108057
  6. W. Johnson, Jr, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. Liebler, J. G. Marks, Jr, R. C. Shank, T. J. Slag a, P. W. Snyder, and F. A. Andersen, Safety assessment of 1,2-glycols as used in cosmetics, Int. J. Toxicol., 31(Suppl 5), 147 (2012).
  7. E. Y. Choi, Effect of phenoxyethanol and alkane diol mixture on the antimicrobial activity and antiseptic ability in cosmetics, Kor. J. Aesthet. Cosmetol., 13(2), 213 (2015).
  8. Yogiara, S. J. Hwang, S. Park, J. K. Hwang, and J. G. Pan, Food-grade antimicrobials potentiate the antibacterial activity of 1,2-hexanediol, Lett. Appl. Microbiol., 60(5), 431 (2015). https://doi.org/10.1111/lam.12398
  9. W. Johnson, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. Liebler, J. G. Marks, R. C. Shank, T. J. Slag a, P. W. Snyder, and F. Alan Andersen, Safety assessment of alkyl glyceryl ethers as used in cosmetics, Int. J. Toxicol., 32(Suppl 5), 5 (2013).
  10. S. Langsrud, K. Steinhauer, S. Luthje, K. Weber, P. Goroncy-Bermes, and A. L. Holck, Ethylhexylglycerin impairs membrane integrity and enhances the lethal effect of phenoxyethanol, PLoS One, doi: 10.1371/journal.pone.0165228. (2016).
  11. B. Dreno, T. Zuberbier, C. Gelmetti, G. Gontijo, and M. Marinovich, Safety review of phenoxyethanol when used as apreservative in cosmetics, J. Eur. Acad. Dermatol. Venereol., 33(7 suppl), 15 (2019).
  12. G. W. Ahn, M. H. Choi, Y. T. Woo, and B. K. Jo, A Study on the antimicrobial effect of glyceryl caprylate in cosmetics, J. Soc. Cosmet. Sci. Korea, 33(1), 47 (2007).
  13. S. Papageorgiou, A. Varvaresou, E. Tsirivas, and C. Demetzos, New alternatives to cosmetics preservation, J. Cosmet. Sci., 61(2), 107 (2010).
  14. European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution, Clin. Microbiol. Infect., 9(8), 9 (2003).
  15. H. Berthele, O. Sella, M. Lavarde, C. Mielcarek, A. M. Pense-Lheritier, and S. Pirnay, Determination of the influence of factors (ethanol, pH and aw) on the preservation of cosmetics using experimental design, Int. J. Cosmet. Sci., 36(1), 54 (2014). https://doi.org/10.1111/ics.12094
  16. A. Herman, Antimicrobial ingredients as preservative booster and components, Curr. Microbiol., 76(6), 744 (2019). https://doi.org/10.1007/s00284-018-1492-2
  17. A. D. Warth, Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH, Appl. Environ. Microbiol., 57(12), 3410 (1991). https://doi.org/10.1128/aem.57.12.3410-3414.1991