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Abstract 

 
RSA is known as one of the best techniques for securing secret information across an 
unsecured network. The private key which is one of private parameters is the aim for attackers. 
However, it is exceedingly impossible to derive this value without disclosing all unknown 
parameters. In fact, many methods to recover the private key were proposed, the performance 
of each algorithm is acceptable for the different cases. For example, Wiener’s attack is 
extremely efficient when the private key is very small. On the other hand, Fermat’s factoring 
can quickly break RSA when the difference between two large prime factors of the modulus 
is relatively small. In general, if all private parameters are not disclosed, attackers will be able 
to confirm that the private key is unquestionably inside the scope [3, n – 2], where n is the 
modulus. However, this scope has already been reduced by increasing the greatest lower bound 
to [dil, n – 2], where dil  ≥  3. The aim of this paper is to decrease the least upper bound to 
narrow the scope that the private key will remain within this boundary. After finishing the 
proposed method, the new scope of the private key can be allocated as [dil, dir], where dir ≤  n 
– 2. In fact, if the private key is extremely close to the new greatest lower bound, it can be 
retrieved quickly by performing a brute force attack, in which dir is decreased until it is equal 
to the private key. The experimental results indicate that the proposed method is extremely 
effective when the difference between prime factors is close to each other and one of two 
following requirement holds: the first condition is that the multiplier of Euler totient function 
is very close to the public key’s small value whereas the second condition is that the public 
key should be large whenever the multiplier is far enough.  
 
 
Keywords: RSA, The least upper bound, The greatest lower bound, The private key, prime 
factors 
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1. Introduction 

At present, data transfer over network channel is the preferred method due to its convenience 
and speed. However, network channel is referred as the unsecured channel. In other word, if 
the secret data being transferred across a network channel is very important and there is no 
securing algorithm in place to protect it, then attackers can simply entrap the data. Prior to 
transferring any important or private information over an unsecured connection, it should be 
encased by some securing algorithms. Cryptography [1] is one of the beneficial techniques for 
protecting data prior to transmission via an unsecured channel by using encryption and 
decryption processes. The concept of using cryptography to secure the information is as 
follows: First, the secret message which is called the plaintext is encrypted by using the secret 
key. In fact, the encrypted message is referred to the ciphertext and it is transmitted to the 
recipient instead of the secret message. On receiver side, after the ciphertext has arrived, the 
original plaintext can be recovered using the secret key and a decryption process. In general, 
cryptography is classified into two broad categories. Each type has its own unique advantages 
and disadvantages. The first is symmetric key cryptography which uses the same key, referred 
to the secret key for both the encryption and decryption. The advantage is related to time 
required to complete the process. On the other hand, the disadvantage refers to the method in 
which an attacker might avoid exchanging the secret key between senders and receivers. 
Asymmetric key cryptography, on the other hand, is also known as public key cryptography. 
The key concept is to the different keys that must be chosen to encrypt the plaintext and decrypt 
the ciphertext. One key which is kept secretly is called the private key and the other key which 
is disclosed to everyone is called the public key. In fact, these keys are mathematically related 
to each other. The advantage is that the secret channel to exchange the key is eliminated. 
However, the disadvantage is that the procedure is quite time consuming to complete the 
process. Therefore, both of symmetric key cryptography and public key cryptography are 
integrated in the real situation in order to increase the performance.  
 RSA [2] is the best well-known public key cryptography. It is chosen to apply with a variety 
of applications to secure the information such as [3], [4], [5], [6], [7], [8]. However, to avoid 
intruder attacks, the modulus bit length (n) should be assigned at least 1024 bits. Therefore, 
one of the two keys must be a large integer. In fact, in order to ensure that RSA is extremely 
secure, the private key (d) should be large. Although, RSA is still difficult to be broken (all 
parameters are strong), many algorithms can break RSA when certain parameters are weak. 
Moreover, many weak parameters are disclosed such as a low private key [9], a high private 
key [10], a low prime factor [11] and the small distance between two prime factors [12]. In 
this paper, two weak parameters are presented. The first weakness is the small public key and 
the short distance between it and the multiplier of Euler totient function. The other weakness 
is the large public key and the high distance between the high public key and the multiplier of 
Euler totient function. In addition, there should be a little difference between two prime factors. 
Moreover, the new method for estimating initial value of the private key that effectively 
addresses both weaknesses is also proposed.  

Assuming that all private parameters are hidden and if intruders want to recover d, they 
will clearly recognize that the position of d must be located within the following scope: d ∈
[3, n - 2]. This scope is costly since the length of n is allocated at least 1024 bits. If brute force 
attack is selected to find d, then the cost of computation is quite high. The method in [13] was 
proposed to estimate the new greatest lower bound as [dil, n – 2], where dil  ≥  3. Therefore, 
this method can recover d rapidly if d is a small integer. However, it is still inefficient when d 
is a large integer. In fact, the aim of the proposed method is to estimate the new least upper 
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bound as [3, dir], when dir ≤  n – 2. Therefore, if the proposed method is combined with the 
method in [13], the scope is narrowed, or d ∈  [dil, dir]. 

2. Related Works 
In this section, the overviews of RSA and many techniques to break this algorithm will be 
mentioned. 

2.1 RSA Scheme 
RSA [2] is the best well-known public key cryptography. It was proposed by R. Rivest, A. 
Shamir and L. Adleman in 1977. In fact, RSA’s name is derived from the initial letter of their 
surnames. RSA is administered by three main processes. The first process is key generation 
which is the process to create a pair of keys. The procedures in this process are as follows: it 
is begun by generating two large prime numbers, p and q where p < q, randomly to find the 
modulus, n = p*q, and Euler totient function, Φ (n) = (p – 1)*(q – 1). The next step is to select 
the public key, e, that must be in the following condition: 1 < e < Φ (n) and gcd(e, Φ (n)) = 
1. After, e is found, the private key, d, can be computed from e*d mod Φ (n) = 1 by using 
Extended Euclidean Algorithm such as [14], [15], [16]. The second process is the encryption 
process, which is the process of converting the original plaintext into the ciphertext. The 
equation is c = me mod n, where m is the original plaintext and c is the ciphertext. The last 
process is the decryption process for recovering the original plaintext by using the following 
equation: m = cd mod n. 

Private parameters for RSA scheme are p, q, d and Φ (n). Therefore, intruders must locate 
at least one of them in order to recover m. In fact, for the real situation, they are all strongly 
allocated to prevent easily attacks. However, RSA may be broken when at least one of the 
private parameters is vulnerable. In the next topic in the related works section discusses an 
overview of several attacking algorithms is provided, highlighting how the performance of 
each algorithm is customized to the various weak points.   

2.2 Overviews of some algorithms to break RSA  
In fact, there are a variety of algorithms that can be chosen to break RSA whenever its 
vulnerabilities are discovered.  

Wiener’s attack [17] is the technique which was presented by Michael J. Wiener in 1990 
to recover d. His theorem relies mostly on the continuous fraction as its mathematical basis. 

In addition, Wiener’s attack is particularly effective when d < 
1
41

3
n . Therefore, it implies that 

the small private key is the weak point of RSA. 
Besides, in 1999, D. Boneh and G. Durfee [18] presented the modified version of Wiener’s 

attack. Although, d > 
1
41

3
n , d is still rapidly recovered whenever d < n0.292. In order to avoid 

trapping d by using this method, d should be assigned larger than n0.292. 
In 2017, the technique [10] was presented to accelerate the decryption process of RSA by 

utilizing the new exponent. In fact, this method has highly performance when d is large, 
because the new exponent which is mathematically related with d and Φ (n) becomes small. 
On the other hand, if d is too large, this method may be selected to find d. 
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Trial division algorithm (TDA) is the method for discovering p and q by for factoring n. It 
is divided into two techniques. The first way [19] is to select 3 as the initial divisor which is 
always increased by two when the remainder exists. This approach can quickly discover p and 
q when p is a small integer, as it is particularly efficient when p is small. Therefore, the small 

prime factor is also a weakness of RSA. However, n    is chosen as the first divisor for the 

second technique [20] and it is always decreased when there is the remainder. Therefore, if p 

is extremely close to n   , it can be recovered very fast.  

Fermat’s Factorization algorithm (FFA) [21] is the factoring method which was proposed 
by Pierre de Fermat. A composite integer with two prime factors can be represented as the 
difference between two perfect square integers. In fact, when two prime factors are close in 
proximity to one another, they can be computed rapidly. Furthermore, other FFA-improved 
algorithms such as [22], [23], [24], [25], [26] were proposed to increase computation speed. 

Pollard’ s p -1 [27] is the method that was presented by J. Pollard in 1974. Assuming that 
all prime factors of p – 1 or q – 1 are a small integer. This method is extremely efficient in 
recovering both p and q. That is, another weak point is that all prime factors of p - 1 and q – 1 
must be small. 

In 2020, the new methodology [28] to recover d was proposed. Assuming that Φ (n) = ad 
+ b where a | b and a | Φ (n), then the original plaintext can be computed by using the 

following equation: m = 1( )
b
ac−  mod n. Moreover, this equation can be chosen to apply with 

brute force attack to find d. The experimental results in the paper showed that when a is large 

and  
b
a

 is small, a short time to complete the operation is required. 

The simplest technique is brute force attack. It can be selected to find d directly to locate 
one of two prime factors. In general, to limit the scope of d, it must first be analyzed. Due to 
the fact that Φ (n) is the hidden parameter, the scope of d will be assigned as [3, n – 2] which 
is a very large range. Moreover, brute force attack can be selected to find d in two ways. The 
first way is to assign the initial value of d which is equal to the greatest lower bound and it 
must be increased when it is not certainly the real private key. That mean, this method is 
suitable for the small private key. On the other hand, the other way is to assign the initial value 
of d as n – 2 and it is decreased when it is not the target. Therefore, this method is suitable for 
the high private key.  

In the beginning of 2021, the method [13] to estimate the new greatest lower bound which 
is always equal or larger than 3 was proposed. Assuming that dil is represented as the new 

greatest lower bound, it can be calculated by using the following equation: dil = 
2 3

3
n

e
− 

  
. 

Therefore, scope of d is reduced to [dil, n – 2]. 

2.3 Considering the patterns of p + q 
In fact, many methods to analyze the patterns of p + q were proposed. Once all patterns are 
found, the computation time to recover d is reduced.  

Assigning LSGm(z) is represented as the last m digits of z and LSG(z) is represented as the 
last digit of z when z ∈¢ . In 2017, the methodology [29] to search for all possible values of 
LSGm(p) and LSGm(q) was proposed to find all possible values of LSGm(p + q) and LSGm(p – 
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q). However, only LSGm(p + q) is focused  in this paper. Assuming that a pair of LSGm(p) and 
LSGm(q) which LSGm(LSGm(p) * LSGm(q)) = LSGm(n) is found, either rule 1 or rule 2 is 
selected to find other pairs.  

Rule 1: If LSG(p) = LSG(q), LSGm((p + 10m-1)(q + 9*10m-1)) = LSGm((p + 9*10m-1)(q +10m-

1)) = LSGm(n). 
Rule 2: If LSG(p) ≠  LSG(q), there is two odd integers, k1 and k2 where k1, k2 = 1, 3, 7 or 

9 and (LSG(p)*k2 + LSG(q)*k1) mod 10 = 0, that LSGm((p + k1*10m-1)(q + k2*10m-1)) = 
LSGm(n). 
 
Example 1: After using Rule 2, all pairs of LSG2(p) and LSG2(q) which 
LSG2(LSG2(p)*LSG2(q)) = LSG2(n) = 73 are found as follows: (07, 39), (17, 69), (27, 99), 
(37, 29), (47, 59), (57, 89), (67, 19), (77, 49), (87, 79), (97, 09), (01, 73), (11, 43), (21, 13), 
(31, 83), (41, 53), (51, 23), (61, 93), (71, 63), (81, 33), (91, 03) 

After all pairs of LSGm(p) and LSGm(q) are found, all possible values of LSGm(p + q) are 
also calculated by using LSGm(p + q) = LSGm(LSGm(p) + LSGm(q)). 
 
Example 2: After all pairs of LSG2(p) and LSG2(q) which LSG2(LSG2(p)*LSG2(q)) = LSG2(n) 
= 73 are found, all possible values of LSG2(p + q) are as follows:  
   
  S = {06, 14, 26, 34, 46, 54, 66, 74, 86, 94} 
 

Where S is set of all possible values of LSG2(p + q) that  LSG2(LSG2(p)*LSG2(q)) = 
LSG2(n) = 73 

 
The benefit of S is that it eliminates irrelevant values of this set from the computation, as p 

+ q may not be the actual result.  
In fact, the patterns of p + q can be thoroughly analyzed when m is larger. 

 

Table 1. Patterns of 
2

p q+
 that are considered from 3 forms of n 

Case a b c Odd / Even x mod 3 = 0 LSG(x) 
Odd Even Yes No 

1 1 1 1     1, 5, 9 
2 1 1 9     3, 5, 7 
3 1 1 13     3, 7 
4 1 1 17     1, 9 
5 1 5 1     1, 5, 9 
6 1 5 9     3, 5, 7 
7 1 5 13     3, 7 
8 1 5 17     1, 9 
9 3 1 3     2, 8 
10 3 1 7     4, 6 
11 3 1 11     0, 4, 6 
12 3 1 19     0, 2, 8 
13 3 5 3     2, 8 
14 3 5 7     4, 6 
15 3 5 11     0, 4, 6 
16 3 5 19     0, 2, 8 
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Furthermore, in 2016, the patterns of 
2

p q+  [30] are analyzed by considering the forms of 

n that are divided into three forms. Assuming that a = n mod 4, b = n mod 6 and c = n mod 

20, there are 16 patterns of x = 
2

p q+  which are shown in Table 1. 

After computing three forms of n, the solution will be found in just one of the cases in 
Table 1. Therefore, many steps can be eliminated from the computation. In fact, the type of 
an even or odd number is disclosed from a, the result of x mod 3 is disclosed from b and LSG(x) 
is known from c. 

In [31], the other pattern of p + q is also discovered. It is based on the result of (n + 1) mod 
8. In fact, if the result of (n + 1) mod 8 is equal to 0, then the result of (p + q) mod 8 must be 
also equal to 0. This concept is applicable to a wide variety of brute force attack, as many 
loops may be omitted when the result of (n + 1) mod 8 is equal to 0.  

3. The Proposed Method 
In this paper, the new greatest lower bound, dir, to find d is proposed. In fact, after the method 
in [13] was proposed, the position of d must be inside the scope [dil, n – 2]. That is, the initial 
value can be assigned as dil in order to initiate a brute force attack to find d from left to right. 
On the other hand, this method becomes inefficient when d is large. In this case, using brute 
force attack to search for d from right to left is more appropriate. That is, the initial value is 
started as n – 2. However, n – 2 is still far from d which is always less than Φ (n). Therefore, 
in this paper, dir which is always equal to or less than n – 2 is presented. 
 
 

 
 

 
Fig. 1. The position of each parameter on number line 

 
The information in Fig. 1 shows the parameters associated with RSA on the number line. 

It implies that dir is always equal to or less than n – 2. Therefore, if this value is found, the 
scope of d is narrowed in which the position of d is certainly at [dil, dir].  

Before estimating dir, the integer which is equal or larger than Φ (n) must be found. Due 
to the fact that Φ (n) = (p – 1)*(q – 1) = n – (p + q) + 1, the patterns of p + q should be 
analyzed to estimate the integer which is close to Φ (n) and is still larger than this value.  

From Table 1, it implies that the result of n mod 4 can disclose the result of 
2

p q+ which 

is an even number or odd number. However, the result of n mod 20 can also disclose this type. 
Moreover, the patterns of LSGm(p + q) are deeper than the patterns analyzed from n mod 20. 
Therefore, three techniques for analyzing the patterns of p + q from n mod 6, n + 1 mod 8 and 
LSGm(n) are selected to find the integer in the condition.  

In [31], it shows that the result of (p + q) mod 8 is equal to 0 when (n + 1) mod 8 = 0.  
However, if (n + 1) mod 8 ≠ 0, it must be also analyzed to find all possible value of (p + q) 
mod 8. 

dl  dil dir d 

2tl 2tr 

n 2-n  
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Theorem 1: The results of (p + q) mod 8 are shown in Table 2, The expansion of [31]. 
 

Table 2. The result of (p +q) mod 8 
(n + 1) mod 8 (p + q) mod 8 

0 0 
2 2, 6 
4 4 
6 2, 6 

 
Proof: There are 15 cases as follows: 
Case 1: p mod 8 = 1 and q mod 8 = 1 
 Then,  (p*q + 1) mod 8 = ((p mod 8) * (q mod 8) + 1 mod 8) mod 8 
      = (1*1 + 1) mod 8 = 2 
 And,  (p + q) mod 8 = ((p mod 8) + (q mod 8)) mod 8 
     = (1 + 1) mod 8 = 2 
Case 2: p mod 8 = 1 and q mod 8 = 3 (The same result with p mod 8 = 3 and q mod 8 = 1) 
 Then,  (p*q + 1) mod 8 = (1*3 + 1) mod 8 = 4 
 And,  (p + q) mod 8 = (1 + 3) mod 8 = 4 
Case 3: p mod 8 = 1 and q mod 8 = 5 (The same result with p mod 8 = 5 and q mod 8 = 1) 
 Then,  (p*q + 1) mod 8 = (1*5 + 1) mod 8 = 6 
 And,  (p + q) mod 8 = (1 + 5) mod 8 = 6 
Case 4: p mod 8 = 1 and q mod 8 = 7 (The same result with p mod 8 = 7 and q mod 8 = 1) 
 Then,  (p*q + 1) mod 8 = (1*7 + 1) mod 8 = 0 
 And,  (p + q) mod 8= (1 + 7) mod 8 = 0 
Case 5: p mod 8 = 1 and q mod 8 = 9 (The same result with p mod 8 = 9 and q mod 8 = 1) 
 Then,  (p*q + 1) mod 8  = (1*9 + 1) mod 8 = 2 
 And,  (p + q) mod 8 = (1+ 9) mod 8 = 2 
Case 6: p mod 8 = 3 and q mod 8 = 3  
 Then,  (p*q + 1) mod 8 =  (3*3 + 1) mod 8 = 2 
 And,  (p + q) mod 8 = (3+ 3) mod 8 = 6 
Case 7: p mod 8 = 3 and q mod 8 = 5 (The same result with p mod 8 = 5 and q mod 8 = 3) 
 Then,  (p*q + 1) mod 8 = (3*5 + 1) mod 8 = 0 
 And,  (p + q) mod 8 = (3+ 5) mod 8 = 0 
Case 8: p mod 8 = 3 and q mod 8 = 7 (The same result with p mod 8 = 7 and q mod 8 = 3) 
 Then,  (p*q + 1) mod 8 = (3*7 + 1) mod 8 = 6 
 And,  (p + q) mod 8= (3+ 7) mod 8 = 2 
Case 9: p mod 8 = 3 and q mod 8 = 9 (The same result with p mod 8 = 9 and q mod 8 = 3) 
 Then,  (p*q + 1) mod 8 = (3*9 + 1) mod 8 = 4 
 And,  (p + q) mod 8= (3+ 9) mod 8 = 4 
Case 10: p mod 8 = 5 and q mod 8 = 5  
 Then,  (p*q + 1) mod 8  = (5*5 + 1) mod 8 = 2 
 And,  (p + q) mod 8 = (5+ 5) mod 8 = 2 
Case 11: p mod 8 = 5 and q mod 8 = 7 (The same result with p mod 8 = 7 and q mod 8 = 5) 
 Then,  (p*q + 1) mod 8 = (5*7 + 1) mod 8 = 4 
 And,  (p + q) mod 8= (5+ 7) mod 8 = 4 
Case 12: p mod 8 = 5 and q mod 8 = 9 (The same result with p mod 8 = 9 and q mod 8 = 5) 
 Then,  (p*q + 1) mod 8 = (5*9 + 1) mod 8 = 6 
 And,  (p + q) mod 8 = (5+ 9) mod 8 = 6 
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Case 13: p mod 8 = 7 and q mod 8 = 7  
 Then,  (p*q + 1) mod 8 = (7*7 + 1) mod 8 = 2 
 And,  (p + q) mod 8= (7+ 7) mod 8 = 6 
Case 14: p mod 8 = 7 and q mod 8 = 9 (The same result with p mod 8 = 9 and q mod 8 = 7) 
 Then,  (p*q + 1) mod 8 = (7*9 + 1) mod 8 = 0 
 And,  (p + q) mod 8 = (7+ 9) mod 8 = 0 
Case 15: p mod 8 = 9 and q mod 8 = 9  
 Then,  (p*q + 1) mod 8 = (9*9 + 1) mod 8 = 2 
 And,  (p + q) mod 8 = (9+ 9) mod 8 = 2 
 

Therefore, all results of (p + q) mod 8 are matched with the information in Table 2.    
 

In fact, considering the patterns of (p + q) mod 8, (p + q) mod 3 and LSGm(p + q) together 
are the key to find i which must be selected as the variable in theorem 2. 

 
Theorem 2 Assigning i is represented as the distance between the traditional initial value of p 
+ q which is equal to 2 n    and the improved initial value, then 

𝑑𝑑 ≤ �
1 +  (𝑒𝑒 –  1)  ∗ (𝑛𝑛 − 2�√𝑛𝑛� − 𝑖𝑖 + 1 )       

𝑒𝑒
� 

Proof:   
From    Φ (n) = (p – 1)*(q – 1)  

                 = pq – (p + q) + 1 
                       = n – (p + q) + 1 

 
In general, p + q 2 n 

 ≥  ,  see in [12] 

Then,    Φ (n) ≤  n – ( 2 n   ) + 1 
However, after using the technique to analyze all patterns of LSGm(p + q), (p + q) mod 3 and 
(p + q) mod 8, then p + q ≥ 2 n   + i, therefore 

    Φ (n) ≤  n – ( 2 n   +i) + 1 

Then,    Φ (n) ≤  (n – 2 n   - i + 1)  
 
From,    ed mod  Φ (n)  = 1 
Hence    ed = 1 + kΦ (n)   
Or,    ed ≈   kΦ (n)   
 
Because, both of e and d is less than Φ (n), it implies that k < e or k ≤  e – 1  
 
Then,    ed < 1 + eΦ (n)   
That means,   ed ≤  1 + (e – 1) *Φ (n)   
 
From, Φ (n) ≤  (n – 2 n   - i + 1), then  
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   ed  ≤   1 + (e – 1) *(n – 2 n   - i + 1)  

Or,   d  ≤   
1 + (𝑒𝑒 – 1) ∗�𝑛𝑛−2�√𝑛𝑛�−𝑖𝑖+1 �       

𝑒𝑒
 

 
In fact, d is always an integer, 

Therefore,   𝑑𝑑 ≤ �1 + (𝑒𝑒 – 1) ∗(𝑛𝑛−2�√𝑛𝑛�−𝑖𝑖+1 )       
𝑒𝑒

�   
 

Therefore, assigned dir is the new initial value to find d from right to left, it can be estimated 
by using the following equation: 
 

   𝑑𝑑𝑖𝑖𝑖𝑖 = �1 + (𝑒𝑒 – 1) ∗(𝑛𝑛−2�√𝑛𝑛�−𝑖𝑖+1 )       
𝑒𝑒

�  (1) 
 

Where, d ≤  dir ≤ n -2  
 

Example 3: Assuming n = 167556124362173, e = 3499 and all pairs of LSG2(p + q) are 
disclosed as follows:  S = {06, 14, 26, 34, 46, 54, 66, 74, 86, 94} (using theorems in [29]), 
Finding the least upper bound of d by using theorem 2. (The private parameters are p = 
24163669, q = 6934217, Φ (n) = 167556093264288 and d = 134178957795523) 
Sol. 
 Before using the equation in theorem 2, the variable, i, must be found,  
 First, two forms of n must be checked, 
 Because (167556124362173 + 1) mod 8 = 6, then the result of (p + q) mod 8 = 2, 6. 
 Furthermore, (p + q) mod 3 must be equal to 0, because 178719335848973 mod 6 = 
5. 
 Next, the initial value of p + q which is equal to g = 2 n    must be calculated, 

1675561243621732    = 25888696. 

 Because 25888696 mod 8 = 0, then g = 25888696 + 2 = 25888698 
 Because 25888698 mod 3 = 0, then g= 25888698 
 Because LSG2(25888698) = 98 is not a member in S, then this value is certainly not 
the real value of p + q. Therefore, it can be reassigned as 25888706. However, 25888706 mod 
3 = 2  ≠ 0, then the next value of g should be 25888714. In addition, 25888714 mod 3 = 1  ≠
0, then the next value of g should be 25888726. However, 25888726 mod 3 = 1  ≠ 0, then the 
next value of g should be 25888734. In fact, 25888734 mod 3 = 0 and 25888734 mod 8 = 6. 
Therefore, it is chosen as the new initial value. Furthermore, i can be calculated from i = 
25888734 – 25888696 = 38. 
 
 
 
 
 
 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 6, June 2022                                   2083 

 From the equation (1), 
 

𝑑𝑑𝑖𝑖𝑖𝑖 = �
1 + (𝑒𝑒 –  1)  ∗ (𝑛𝑛 − 2�√𝑛𝑛� − 𝑖𝑖 + 1 )       

𝑒𝑒
� 

 
 

𝑑𝑑𝑖𝑖𝑖𝑖 = �
1 +  (3499 –  1)  ∗ (167556124362173 − 2�√167556124362173� − 38 + 1 )       

3499
� 

 = 167508211620489  
 
 Usually, the tradition initial value to find the private key from right to left is begun as 
dr = n – 2 = 167556124362171, that means the distance (s) to find d is decreased as:  

2
r ird d

s
−

=  

167556124362171 1675082116 9
2

2048−
=  

    = 23956370841 
 
 Therefore, the distance (tr) between dir and d is as follows: 
 

    
2

ir
r

d d
t

−
=   

    167508211620489 134178957795523
2rt
−

=  

       = 16664626912483 
     
 Assuming that the method in [13] is selected to find d, dil has to be computed from the 
following equation: 

          
2 3

3il
n

d
e
−

=  
  

 

167556124362172* 3
3*349

3
9

−
=  
  

 

= 31924573567 
 
 Therefore, the distance (tl) between dil and d is as follows: 

 

2
il

l
d d

t
−

=  

 134178957795523 31924573
2

567−
=  

= 67073516610978 
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Then total loops to find d by using the proposed method is less than the method in [13]. In 
fact, the reason is that k = 2802 (ed = 2802*Φ (n) + 1) in this example is quite large that is 
more suitable for the proposed method. On the other hand, it becomes unsuitable for the 
method in [13] which is highly efficient when k is a small integer. 

In addition, the information in example 4 will show the case of e and d that the proposed 
method can be selected to find d very fast. 
 
Example 4: Assuming n = 1907322773, e = 7603 and all pairs of LSG2(p + q) are disclosed 
as follows:  S = {06, 14, 26, 34, 46, 54, 66, 74, 86, 94} (using theorems in [29]), Finding the 
least upper bound of d by using theorem 2. (The private parameters are p = 41981, q = 45433,          
Φ (n) = 1907235360 and d = 1906984507) 
Sol. 
 Before, using the equation in theorem 2, the variable, i, must be found,  
 First, two forms of n must be checked, 
 Because (1907322773 + 1) mod 8 = 6, then the result of (p + q) mod 8 = 2, 6. 
 Furthermore, (p + q) mod 3 must be equal to 0, because 1907322773 mod 6 = 5. 
 Next, the initial value of p + q which is equal to g = 2 n 

   must be calculated, 

19073222 773   = 87346. 

 Because 87346 mod 8 = 2, then g = 87346 
 Because 87346 mod 3 = 1, then g should be increased. However, g = 87354 is the 
minimum integer that is larger than 87346 and this value is still in the case of (p + q) mod 8 = 
2 or 6 and (p + q) mod 3 = 0. Therefore, g = 87354. 

Because LSG2(87354) = 54 is already a member in S, therefore, it is chosen as the new 
initial value. Furthermore, i can be calculated from i = 87354 – 87346 = 8. 
 From the equation in theorem, 
 

𝑑𝑑𝑖𝑖𝑖𝑖 = �
1 + (𝑒𝑒 –  1)  ∗ (𝑛𝑛 − 2�√𝑛𝑛� − 𝑖𝑖 + 1 )       

𝑒𝑒
� 

𝑑𝑑𝑖𝑖𝑖𝑖 = �
1 +  (7603 –  1)  ∗ (1907322773− 2�√1907322773� − 8 + 1 )       

7603
� 

    = 1906984566 
 
Because d is always an odd integer, then dir = 1906984566 – 1 = 1906984565 
Therefore, the distance (tr) between dir and d is as follows: 

    
2

ir
r

d d
t

−
=   

    1906984565 1906984
2

507
rt

−
=  

       = 29 
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Although, d which is in this example is very large, the distance between the new initial 
value and the target is only 29. Therefore, it consumes only a little time to recover d. In fact, 
the reason that the proposed method can recover d very fast is k = 7602 (e*d = 1 + 7602*Φ
(n)) that is the maximum value. 

 
Moreover, if 2 n    + 1 = p + q and k = e – 1, dir is certainly equal to d. Therefore, d can 

be recovered by using the equation (1). 
 
In addition, after dir is found, d can be recovered by using algorithm 1. 
 

 
Algorithm 1 Finding d' by using brute force attack from right to left 

with the new initial value 
Input: dir, e, n 
Output: d' (d' is possible to be equal to d) 

1. Selecting m, 1 < m < n 
2. c  me mod n  
3. a  c-1 mod n 
4. a  a2 mod n 
5. t  dir 
6. h  ct mod n 
7. i  0 
8. While h ≠ m do 
9.     h  h*a mod n 
10.     i  i + 1 
11. End While 
12. d'  dir – 2*i 

 
 In fact, d' is very high possible to be equal to d. However, if d' is not still equal to d, then 
the loop in line 8 to 10 is required again with the present value of i to find the period value 
which will be occurred when h becomes to m again. In addition, various unrelated integers 
will be removed when the period value is found.  
 

Nevertheless, if the position of d is at the middle of [dil, dir], both of the proposed method 
and the method in [13] are not suitable to recover d, because computation costs are still high. 

However, if this event is occurred, dmid should be selected as the initial value instead of dil 
and dir. This value can be estimated by using the equation (2). 
 

     
2

ir il
mid

d dd +
=      (2) 

 
Although, dmid is closer to d than both of dir and dil (when the position of d is at the middle 

of [dir, dil]), it cannot be confirmed that dmid is larger or less than d. Therefore, after dmid is 
found, both of two ways for brute force attack, (left to right) and (right to left), must be selected 
to recover d.    
 
 
 



2086                                                                                           Somsuk et al.: The Improved Estimation of the Least  
Upper Bound to Search for RSA’s Private key 

Example 5: Assuming n = 1907322773, e = 1441 and all pairs of LSG2(p + q) are disclosed 
as follows:  S = {06, 14, 26, 34, 46, 54, 66, 74, 86, 94} (using theorems in [29]), Finding the 
least upper bound of d by using theorem 2. (The private parameters are p = 41981, q = 45433, 
Φ (n) = 1907235360, k = 675 and d = 893396161) 
 
Sol. 
 Because i = 8 is already calculated is example 4, dir can be estimated as follows: 
 
 

𝑑𝑑𝑖𝑖𝑖𝑖 = �
1 + (𝑒𝑒 –  1)  ∗ (𝑛𝑛 − 2�√𝑛𝑛� − 𝑖𝑖 + 1 )       

𝑒𝑒
� 

𝑑𝑑𝑖𝑖𝑖𝑖 = �
1 +  (1441 –  1)  ∗ (1907322773− 2�√1907322773� − 8 + 1 )       

1441
� 

    = 1905911870, because d is always an odd number, therefore, dir = 1905911869 
 

 Then,   
2

ir
r

d d
t

−
=   

    1905911869 8933961
2

61
rt

−
=  

       = 506257854 
 
 However, if dil is selected, it can be estimated as follows: 
 

    
2 3

3il
n

d
e
−

=  
  

 

1907322773
1441

2* 3
3*

−
=  
  

 

= 882408  
 Because d is always an odd number, therefore, dil = 882409 

Then,   
2

il
l

d d
t

−
=  

 893396161 882 9
2

40−
=  

= 446256876 
 
 In fact, dmid can be estimated by using equation (2) 
 

    
2

ir il
mid

d d
d

+
=  

    1905911869 882 9
2

40+
=  

    = 953397139 
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 In this example, dmid > d, then distance between dmid and d is as follows: 
 

    
2

mid
mid

d d
t

−
=  

    953397139 8933
2

96161−
=  

    = 30000489 
  
 Where, tmid is the distance between dmid and d 
 

However, for the real situation, if dmid is selected, the process to find d has to execute 
two ways for brute force attack. Therefore, 

 
tmid = 2*30000489 
        = 60000978 

 
 

Table 3. Comparison about total distance during three techniques from example 5 
Algorithm The initial value Total distance 

Brute Force Attack  
(left to right) 

dil = 882409 446256876 

Brute Force Attack  
(right to left) 

dir = 1905911869 506257854 

Brute Force Attack  
(two ways) 

dmid = 953397139 60000978 

 
 
The information in example 5 shows that if the position of d is close to the middle of [dil, 

dir], dmid which is the center between dir and dil is closer to d than both of dir and dil. 
  

4. Experimental Results 

In this section, the experimental results will be mentioned. It is divided into two parts. The 
first part is to analyze many pairs of e and d which are generated for the single value of n. This 
part is also divided into two experiments. One is for n which is generated from the same size 
of p and q. The other is the experiment of n which is generated from the different size of p and 
q. The second part is the comparison about loops computation to find d during the proposed 
method and the other algorithms. However, in this part, the weak parameters that respond well 
to the proposed method are chosen to strongly demonstrate that this method is highly efficient 
under these conditions. 
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Table 4. Considering dir from each pair of (e, d) generating from n = 1907322773 
Row k (Public Key) 

e 
e - k (Private Key) 

d 
dir (dir – d)/2 Decreasing 

(%) 
1 7602 7603 1 1906984507 1906984565 58 99.98 
2 250852 250853 1 1907227757 1907227815 58 99.93 
3 21 23 2 1741388807 1824312139 82923332 50.02 
4 238 241 3 1883493841 1899321579 15827738 33.57 
5 3620 3623 3 1905656087 1906708995 1052908 36.82 

6 6550 6553 3 1906362217 1906944371 582154 39.39 
7 3 7 4 817386583 1634773217 817386634 25 
8 247 251 4 1876841171 1899636871 22795700 25.21 

9 873 877 4 1898536453 1905060693 6524240 25.74 

10 62 67 5 1764904363 1878769219 113864856 20.04 
11 428 433 5 1885211857 1902830719 17618862 20.31 

12 457 463 6 1882519567 1903116121 20596554 16.96 
13 520 527 7 1881902063 1903616377 21714314 14.58 
14 411580 411587 7 1907202923 1907230786 27863 76.75 
15 1005540 1005547 7 1907222083 1907233523 11440 88.63 
16 819 827 8 1888785683 1904929210 16143527 12.91 
17 182 191 9 1817365631 1897249894 79884263 11.19 
18 3 13 10 440131237 1760525003 1320393766 10 
19 149529 149539 10 1907107819 1907222665 114846 46.57 
20 1658023 1658033 10 1907223857 1907234269 10412 89.47 
21 75 89 14 1607220809 1885805807 278584998 7.16 
22 2957 2971 14 1898248051 1906593469 8345418 8.03 
23 100967 100981 14 1906970941 1907216532 245591 30.19 
24 59 77 18 1461388133 1882466127 421077994 5.57 

25 521 539 18 1843542899 1903696949 60154050 5.68 
26 3755 3773 18 1898136437 1906729923 8593486 6.45 
27 229 269 40 1623631589 1900145325 276513736 2.53 
28 2919 2959 40 1881453199 1906590865 25137666 2.82 
29 1547 1597 50 1847522293 1906041157 58518864 2.14 
30 30293 30343 50 1904092567 1907172563 3079996 4.65 
31 3142743 3142793 50 1907205017 1907234813 29796 74.69 
32 9 109 100 157478149 1889737847 1732259698 1 
33 178987 179087 100 1906170383 1907224769 1054386 8.5 
34 234 337 103 1324311793 1901575967 577264174 0.98 
35 12366  12469 103 1891480669 1907082461 15601792 1.51 
36 863 1013 150 1624821437 1905025413 280203976 0.12 
37 10993 11143 150 1881561367 1907064259 25502892 1.01 
38 25673843 25673993 150 1907224217 1907235345 11128 88.71 
39 1137 1337 200 1621934633 1905808916 283874283 0.54 
40 5954607 5954807 200 1907171303 1907235099 63796 42.11 

 
The information in Table 4 that p and q have the same size (16 bits) shows that the distance 

to find d can be decreased about 99% whenever k = e – 1, because this value is selected for 
the proposed equation. Furthermore, for the same value of e – k and this value may be large, 
the distance will be more reduced when e is larger. The clearly example is shown in 18th row, 
19th row and 20th row that the result of e – k = 10. For the 18th row, that e = 13 is the smallest 
in this group, the distance is decreased only 10%. However, the distance is decreased 46.57% 
in 19th row that the ratio is larger than 18th row. The reason is that e = 149539 is very larger 
than e = 19. Furthermore, the distance can be reduced 89.47% in 20th row, because e = 1658033 
is the largest value in comparison to the other values that are generated from the same result 
of e – k = 10. In fact, the reason that the distance can be more decreased when e is large and 
the result of e – k is stable will be shown in theorem 3.  
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Theorem 3 Assuming e1*d1 = 1 + k1*Φ (n), e2*d2 = 1 + k2*Φ (n) where e1 and e2 are very 
large, e1 > e2 and e1 – k1 = e2 – k2 = s then d1 is always larger than d2. 
Proof: From, 

   
1 ( )k n

d
e

+ Φ
=  

 Then,  1
1

1

1 ( )k n
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+ Φ

=  and 2
2

2
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e
+ Φ

=  

 Because, e1 – k1 = e2 – k2 = s, then k1 = e1 – s and k2 = e2 – s 
 Therefore, 

   1
1

1

1 ( ) ( )e s n
d

e
+ − Φ

=  and 2
2

2

1 ( ) ( )e s n
d

e
+ − Φ

=  

 Because e1 and e2 are very large, then 
1 2

1 1
0

e e
≈ ≈  

 

 That mean, 1
1

1

( ) ( )e s n
d

e
− Φ

≈  and 2
2

2

( ) ( )e s n
d

e
− Φ

≈  

 Because, e1 > e2, then 1 2

1 2

( ) ( )e s e s
e e
− −

>  

 
 Therefore, d1 is always larger than d2 when e1 – k1 = e2 – k2 = s    
  

In addition, for the proposed equation, if e is very large, then 
( 1)

0.999
e

xxx
e
−

≈ . That 

mean, the scope of all possible values of dir is quite narrow. In Table 4, dir is during 
1900145325 to 1907235359 when e > 269. Therefore, the proposed method is suitable for the 
case that the distance between e and k is quite far and e is a large number. 

However, the ratio of decreased distance becomes small when k is very close to e and e is 
a large integer. Therefore, if k is very close to e, the proposed method has very high 
performance when e is small.  

Therefore, it implies that the proposed method is suitable to be selected to recover d when 
one of two following conditions occurs. 

1. k is very close to e and e is a small number 
2. e and k must be large when the distance between e and k is far.   

Furthermore, the information in this table is also shown that all values of dir are less than     
Φ (n) that is demonstrated in Fig. 2. 

 

 

 
Fig. 2. The position of each parameter in Table 4 on number line 

 
 

dir  n-2 d 
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Table 5. Considering dir from each pair of (e, d) generating from n = 3187657073, p = 7193, q = 
443161 (p = 13 bits, q = 19 bits) 

Row k (Public Key) 
e 

e - k (Private Key) 
d 

dir (dir – d)/2 Decreasing 
(%) 

1 1062 1063 1 3184208407 3184545517 337110 90.22 
2 2998312 2998313 1 3187205657 3187543083 337426 25.25 
3 41 43 2 3038964547 3113415213 74450666 49.92 
4 7367 7369 2 3186341689 3187111585 769896 41.46 
5 865029 865031 2 3187199351 3187540463 341112 25.47 
6 4 7 3 1821260983 2732180697 910919714 33.33 
7 10 13 3 2451697477 2942348443 490650966 33.33 
8 88 91 3 3082133971 3152516189 70382218 33.30 
9 137707 137713 6 3187067857 3187521001 453144 23.09 
10 138857 138863 6 3187069007 3187521193 452186 23.10 
11 960 967 7 3164134903 3184247825 20112922 14.49 
12 23071810 23071817 7 3187205753 3187544009 338256 25.05 
13 10679 10687 8 3184820863 3187245883 2425020 14.49 

14 2385849 2385857 8 3187196033 3187542811 346778 24.78 
15 2 11 9 579492131 2897767407 2318275276 11.11 
16 9 19 10 1509729499 3019778665 1510049166 10 
17 39 49 10 2536756369 3122492225 585735856 10.01 
18 34234219 34234229 10 3187205789 3187544053 338264 25.04 
19 159349 159361 12 3186966721 3187524145 557424 19.25 
20 239987 239999 12 3187047359 3187530865 483506 20.69 
21 9 23 14 1247167847 3048955271 1801787424 7.14 
22 26 41 15 2021155481 3109799167 1088643686 6.67 
23 4277 4297 20 3172372153 3186802341 14430188 5.59 
24 47247 47267 20 3185858123 3187476711 1618588 10.02 
25 1348577 1348597 20 3187159453 3187541783 382330 23.16 
26 189 229 40 2630489389 3173624741 543135352 2.51 
27 1561 1601 40 3107576321 3185553177 77976856 2.62 
28 366589 366629 40 3186858989 3187535453 676464 15.23 
29 113 163 50 2209535947 3167988661 958452714 2.01 
30 1131 1181 50 3052269941 3184845125 132575184 2.07 
31 827833 827783 50 3187014217 3187540297 526080 18.1 
32 31 131 100 754224491 3163211749 2408987258 1 
33 34353 34453 100 3177955837 3187451629 9495792 2.11 
34 65447 65557 110 3181858813 3187495525 5636712 2.78 
35 4785551 4785661 110 3187133461 3187543481 410020 21.69 
36 89 289 200 981527329 3176514583 2194987254 0.5 
37 123 323 200 1213704107 3177675589 1963971482 0.5 
38 116088189 116088389 200 3187201229 3187544119 342890 24.77 
39 1217 937 280 2453913473 3184142285 730228812 0.47 
40 9281913 9282193 280 3187110577 3187543803 433226 20.72 

 
In Table 5, although bits length of p and q are different, bits length of p and q are 13 and 

19 in order, the proposed method is still high performance when characteristics of e and k are 
in one of two conditions above. However, dir may be farther from the target, because 

( 2 1? ?n n i − − +   is farther from ( )nΦ  when it is compared with the other values of n 

which are generated from the same size of p and q and are also very close to n. 
However, the information in this table is shown that some values of dir are larger than        

Φ (n). Therefore, number of loops to find d are still large when this event is occurred.  
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Therefore, from the information in Table 4 and Table 5, it implies that dir can be estimated 
well when one of two conditions is happened and the difference between p and q is a little. 

In fact, to confirm that the proposed method performs well when the weak points are 
encountered. It is compared to the other methods to recover d. Then, all results are from the 
small result of e - k and the difference between p and q is rather minor. Furthermore, the 
compared methods are brute force attack (searching from right to left), the improved FFA [22], 
the improved TDA [20] and Pollard’s p – 1. 
 

 
Fig. 3. Logarithm of total loops for each algorithm 

 
In Fig. 3, assuming that z is represented as the distance to find d, the information of y-axis 

is the logarithm of z and x-axis is bits length of modulus. The experimental results show that 
the distance to recover d by using the proposed method is the smallest. However, the distance 
from the improved FFA is close to the proposed method, because FFA is also suitable for the 
small result of p – q.  
 

5. Conclusion 
This paper presents the new least upper bound on the private key which is always equal or less 
than the difference between the modulus and 2. In fact, this value is selected as the new initial 
value for brute force attack by searching for the private key from right to left. That mean, this 
technique is appropriate for the large private key. Unfortunately, when the difference between 
the public key and the multiplier of Euler totient function is very small, this method is 
extremely efficient. However, if the result is high, the public key and the multiplier should be 
large as well. In addition, this method performs well when p and q is close to each other. 
Moreover, assuming the position of d is close to scope’s center, selecting the center between 
the new least upper bound and the greatest lower bound in [13] is preferable alternative. The 
experimental results demonstrate that if one of the weak points occurs, the proposed method 
can estimate the new initial value that is extremely close to the private key. 
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