DOI QR코드

DOI QR Code

Review, Assessment, and Learning Lesson on How to Design a Spectroelectrochemical Experiment for the Molten Salt System

  • 투고 : 2022.04.21
  • 심사 : 2022.05.31
  • 발행 : 2022.06.30

초록

This work provided a review of three techniques-(1) spectrochemical, (2) electrochemical, and (3) spectroelectrochemical-for molten salt medias. A spectroelectrochemical system was designed by utilizing this information. Here, we designed a spectroelectrochemical cell (SEC) and calibrated temperature controllers, and performed initial tests to explore the system's capability limit. There were several issues and a redesign of the cell was accomplished. The modification of the design allowed us to assemble, align the system with the light sources, and successfully transferred the setup inside a controlled environment. A preliminary run was executed to obtain transmission and absorption background of NaCl-CaCl2 salt at 600℃. It shows that the quartz cuvette has high transmittance effects across all wavelengths and there were lower transmittance effects at the lower wavelength in the molten salt media. Despite a successful initial run, the quartz vessel was mated to the inner cavity of the SEC body. Moreover, there was shearing in the patch cord which resulted in damage to the fiber optic cable, deterioration of the SEC, corrosion in the connection of the cell body, and fiber optic damage. The next generation of the SEC should attach a high temperature fiber optic patch cords without introducing internal mechanical stress to the patch cord body. In addition, MACOR should be used as the cell body materials to prevent corrosion of the surface and avoid the mating issue and a use of an adapter from a manufacturer that combines the free beam to a fiber optic cable should be incorporated in the future design.

키워드

과제정보

This work was conducted in conjunction with the Versatile Test Reactor project and is based upon work supported by U.S. Department of Energy under Prime Contract No. DE-AC07-05ID14517 to the Idaho National Laboratory. Any opinions, findings, and conclusions or recommendations expressed in this publication are preliminary and are those of the author(s) and do not necessarily reflect the views of the U.S. Department of Energy or the Idaho National Laboratory.

참고문헌

  1. O. Benes and R.J.M. Konings, "Molten Salt Reactor Fuel and Coolant", in: Comprehensive Nuclear Materials, R.J.M. Konings, editor, 359-389, Elsevier, Amsterdam (2012).
  2. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carls, "Development of Pyroprocessing Technology", Prog. Nucl. Energy, 31(1-2), 131-140 (1997). https://doi.org/10.1016/0149-1970(96)00007-8
  3. K.M. Goff, J.C. Wass, K.C. Marsden, and G.M. Teske, "Electrochemical Processing of Used Nuclear Fuel", Nucl. Eng. Technol., 43(4), 335-342 (2011). https://doi.org/10.5516/NET.2011.43.4.335
  4. D.E. Holcomb, G.F. Flanagan, B.W. Patton, J.C. Gehin, R.L. Howard, and T.J. Harrison. Fast Spectrum Molten Salt Reactor Options, Oak Ridge National Laboratory Report, ORNL-TM-2011-105 (2011).
  5. J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlir, R. Yoshioka, and D. Zhimin, "The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives", Prog. Nucl. Energy, 77, 308-319 (2014). https://doi.org/10.1016/j.pnucene.2014.02.014
  6. C. Yu, X. Li, X. Cai, C. Zou, Y. Ma, J. Wu, J. Han, and J. Chen, "Minor Actinide Incineration and Th-U Breeding in a Small FLiNaK Molten Salt Fast Reactor", Ann. Nucl. Energy, 99, 335-344 (2017). https://doi.org/10.1016/j.anucene.2016.09.025
  7. L.M. Toth and L.O. Gilpatrick. The Equilibrium of Dilute UF3 Solutions Contained in Graphite, Oak Ridge National Laboratory Report, ORNL-TM-4056 (1972).
  8. V. Dracopoulos, B. Gilbert, and G.N. Papatheodorou, "Vibrational Modes and Structure of Lanthanide Fluoride-Potassium Fluoride Binary Melts LnF3-KF (Ln= La, Ce, Nd, Sm, Dy, Yb)", J. Chem. Soc. Faraday Trans., 94(17), 2601-2604 (1998). https://doi.org/10.1039/a802812e
  9. Y.J. Park, T.J. Kim, Y.H. Cho, Y. Jung, H.J. Im, K. Song, and K.Y. Jee, "EPR Investigation on a Quantitative Analysis of Eu(II) and Eu(III) in LiCl/KCl Eutectic Molten Salt", Bull. Korean Chem. Soc., 29(1), 127-129 (2008). https://doi.org/10.5012/bkcs.2008.29.1.127
  10. G.M. Photiadis, B. Bresen, and G.N. Papatheodorou, "Vibrational Modes and Structures of Lanthanide Halide-Alkali Halide Binary Melts LnBr3-KBr (Ln= La, Nd, Gd) and NdC3-ACl (A= Li, Na, K, Cs)", J. Chem. Soc. Faraday Trans., 94(17), 2605-2613 (1998). https://doi.org/10.1039/a802813c
  11. J.K. Wilmshurst, "Infrared Spectra of Molten Salts", J. Chem. Phys., 39(10), 2545 (1963). https://doi.org/10.1063/1.1734059
  12. H. Sun, J.Q. Wang, Z. Tang, Y. Liu, and C. Wang, "Assessment of Effects of Mg Treatment on Corrosivity of Molten NaCl-KCl-MgCl2 Salt With Raman and Infrared Spectra", Corros. Sci., 164, 108350 (2020). https://doi.org/10.1016/j.corsci.2019.108350
  13. Y. Okamoto, M. Akabori, H. Motohashi, A. Itoh, and T. Ogawa, "High-Temperature XAFS Measurement of Molten Salt Systems", Nucl. Instrum. Methods Phys. Res. Sect. A, 487(3), 605-611 (2002). https://doi.org/10.1016/S0168-9002(01)02202-1
  14. C. Bessada, A. Rakhmatullin, A.L. Rollet, and D. Zanghi, "Lanthanide and Actinide Speciation in Molten Fluorides: A Structural Approach by NMR and EXAFS Spectroscopies", J. Nucl. Mater., 360(1), 43-48 (2007). https://doi.org/10.1016/j.jnucmat.2006.08.012
  15. C. Bessada, D. Zanghi, O. Pauvert, L. Maksoud, A. Gil-Martin, V. Sarou-Kanian, P. Melin, S. Brassamin, A. Nezu, and H. Matsuura, "High Temperature EXAFS Experiments in Molten Actinide Fluorides: The Challenge of a Triple Containment Cell for Radioactive and Aggressive Liquids", J. Nucl. Mater., 494, 192-199 (2017). https://doi.org/10.1016/j.jnucmat.2017.07.023
  16. C. Bessada, D. Zanghi, M. Salanne, A. Gil-Martin, M. Gibilaro, P. Chamelot, L. Massot, A. Nezu, and H. Matsuura, "Investigation of Ionic Local Structure in Molten Salt Fast Reactor LiF-ThF4-UF4 Fuel by EXAFS Experiments and Molecular Dynamics Simulations", J. Mol. Liq., 307, 112927 (2020). https://doi.org/10.1016/j.molliq.2020.112927
  17. A.L. Rollet, A. Rakhmatullin, and C. Bessada, "Local Structure Analogy of Lanthanide Fluoride Molten Salts", Int. J. Thermophys., 26(4), 1115-1125 (2005). https://doi.org/10.1007/s10765-005-6688-6
  18. C.V. Banks, M.R. Heusinkveld, and J.W. O'Laughlin, "Absorption Spectra of the Lanthanides in Fused Lithium Chloride-Potassium Chloride Eutectic", Anal. Chem., 33(9), 1235-1240 (1961). https://doi.org/10.1021/ac60177a032
  19. W.T. Carnall and B.G. Wybourne, "Electronic Energy Levels of the Lighter Actinides: U3+, Np3+, Pu3+, Am3+, and Cm3+", J. Chem. Phys., 40(11), 3428 (1964). https://doi.org/10.1063/1.1725018
  20. Y.H. Cho, S.E. Bae, Y.J. Park, S.Y. Oh, J.Y. Kim, and K. Song, "Electronic Structure of U(III) and U(IV) Ions in a LiCl-KCl Eutectic Melt at 450℃", Microchem. J., 102, 18-22 (2012). https://doi.org/10.1016/j.microc.2011.05.006
  21. Y.H. Cho, T.J. Kim, S.E. Bae, Y.J. Park, H.J. Ahn, and K. Song, "Electronic Absorption Spectra of U(III) Ion in a LiCl-KCl Eutectic Melt at 450℃", Microchem. J., 96(2), 344-347 (2010). https://doi.org/10.1016/j.microc.2010.06.001
  22. T. Fujii, H. Moriyama, and H. Yamana, "Electronic Absorption Spectra of Lanthanides in a Molten Chloride: I. Molar Absorptivity Measurement of Neodymium(III) in Molten Eutectic Mixture of LiCl-KCl", J. Alloys Compd., 351(1-2), L6-L9 (2003). https://doi.org/10.1016/S0925-8388(02)01081-2
  23. T. Fujii, T. Nagai, N. Sato, O. Shirai, and H. Yamana, "Electronic Absorption Spectra of Lanthanides in a Molten Chloride: II. Absorption Characteristics of Neodymium(III) in Various Molten Chlorides", J. Alloys Compd., 393(1-2), L1-L5 (2005). https://doi.org/10.1016/j.jallcom.2004.10.013
  24. T. Fujii, T. Nagai, A. Uehara, and H. Yamana, "Electronic Absorption Spectra of Lanthanides in a Molten Chloride: III. Absorption Characteristics of Trivalent Samarium, Dysprosium, Holmium, and Erbium in Various Molten Chlorides", J. Alloys Compd., 441(1-2), L10-L13 (2007). https://doi.org/10.1016/j.jallcom.2006.09.113
  25. T. Fujii, T. Uda, K. Fukasawa, A. Uehara, N. Sato, T. Nagai, K. Kinoshita, T. Koyama, and H. Yamana, "Quantitative Analysis of Trivalent Uranium and Lanthanides in a Molten Chloride by Absorption Spectrophotometry", J. Radioanal. Nucl. Chem., 296(1), 255-259 (2013). https://doi.org/10.1007/s10967-012-2008-3
  26. H.J. Im, Y.K. Jeong, Y.H. Cho, J.G. Kang, and K. Song, "Fluorescence Spectroscopic Characteristics of Tb3+ and Sm3+ in LiCl-KCl Molten Salts", Electrochemistry, 77(8), 670-672 (2009). https://doi.org/10.5796/electrochemistry.77.670
  27. E.C. Jung, S.E. Bae, W. Cha, I.A. Bae, Y.J. Park, and K. Song, "Temperature Dependence of Laser-induced Fluorescence of Tb3+ in Molten LiCl-KCl Eutectic", Chem. Phys. Lett., 501(4-6), 300-303 (2011). https://doi.org/10.1016/j.cplett.2010.11.039
  28. E.C. Jung, S.E. Bae, Y.J. Park, and K. Song, "Time-resolved Laser-induced Fluorescence Spectroscopy of Nd3+ in Molten LiCl-KCl Eutectic", Chem. Phys. Lett., 516(4-6), 177-181 (2011). https://doi.org/10.1016/j.cplett.2011.09.093
  29. B.Y. Kim, H.L. Cha, and J.I. Yun, "Structural Investigation of the Tb (III)-Ln (III) (Ln= Nd, Sm) Binary System in Molten LiCl-KCl Eutectic Salt by Fluorescence Resonance Energy Transfer", J. Lumin., 161, 239-246 (2015). https://doi.org/10.1016/j.jlumin.2015.01.029
  30. B.Y. Kim and J.I. Yun, "Temperature Effect on Fluorescence and UV-vis Absorption Spectroscopic Properties of Dy(III) in Molten LiCl-KCl Eutectic Salt", J. Lumin., 132(11), 3066-3071 (2012). https://doi.org/10.1016/j.jlumin.2012.06.023
  31. B.Y. Kim and J.I. Yun, "Optical Absorption and Fluorescence Properties of Trivalent Lanthanide Chlorides in High Temperature Molten LiCl-KCl Eutectic", J. Lumin., 178, 331-339 (2016). https://doi.org/10.1016/j.jlumin.2016.06.010
  32. H. Lambert, B. Claux, C. Sharrad, P. Soucek, and R. Malmbeck, "Spectroscopic Studies of Neodymium(III) and Praseodymium(III) Compounds in Molten Chlorides", Procedia Chem., 21, 409-416 (2016). https://doi.org/10.1016/j.proche.2016.10.057
  33. C.A. Schroll, A.M. Lines, W.R. Heineman, and S.A. Bryan, "Absorption Spectroscopy for the Quantitative Prediction of Lanthanide Concentrations in the 3LiCl-2CsCl Eutectic at 723 K", Anal. Methods, 8(43), 7731-7738 (2016). https://doi.org/10.1039/C6AY01520D
  34. L.M. Toth, "Coordination Effects on the Spectrum of Uranium(IV) in Molten Fluorides", J. Phys. Chem., 75(5), 631-636 (1971). https://doi.org/10.1021/j100675a006
  35. V.A. Volkovich, A.I. Bhatt, I. May, T.R. Griffiths, and R.C. Thied, "A Spectroscopic Study of Uranium Species Formed in Chloride Melts", J. Nucl. Sci. Technol., 39, 595-598 (2002).
  36. J.P. Young, "Spectra of Uranium(IV) and Uranium(III) in Molten Fluoride Solvents", Inorg. Chem., 6(8), 1486-1488 (1967). https://doi.org/10.1021/ic50054a012
  37. T.J. Kim, Y. Jung, J.B. Shim, S.H. Kim, S. Paek, K.R. Kim, D.H. Ahn, and H. Lee, "Study on Physicochemical Properties of U3+ in LiCl-KCl Eutectic Media at 773 K", J. Radioanal. Nucl. Chem., 287(1), 347-350 (2011). https://doi.org/10.1007/s10967-010-0689-z
  38. P. Bagri, T. Bastos, and M.F. Simpson, "Electrochemical Methods for Determination of Activity Coefficients of Lanthanides in Molten Salts", ECS Trans., 75(15), 489 (2016). https://doi.org/10.1149/07515.0489ecst
  39. G. Boisdie, G. Chauvin, H. Coriou, and J. Hure, "Contribution a la connaissance du mecanisme de l'electroraffinage de l'uranium en bains de sels fondus", Electrochim. Acta, 5(1-2), 54-71 (1961). https://doi.org/10.1016/0013-4686(61)87004-7
  40. M. Brigaudeau and P. Chardard. Study of Electrochemical Properties of Uranium in a Molten Fluoride Medium, CEA Centre d'Etudes Nucleaires de Fontenay- aux-Roses Report, CEA-CONF 4911 (1979).
  41. P. Chardard. Study of Some Electrochemical Properties of Uranium in a Molten Fluoride Medium. Application to the Determination of the U(IV)/U(III) Ratio in the Fuel of a Fused Salt Breeder Reactor, CEA Centre d'Etudes Nucleaires de Fontenay-aux-Roses Report, CEA-N 2090 (1979).
  42. F.R. Clayton, G. Mamantov, and D.L. Manning, "Electrochemical Studies of Uranium and Thorium in Molten LiF-NaF-KF at 500℃", J. Electrochem. Soc., 121(1), 86 (1974). https://doi.org/10.1149/1.2396838
  43. S.N. Flengas, "Electrode Potentials of the Uranium Chlorides in Fused Alkali Chloride Solutions", Can. J. Chem., 39(4), 773-784 (1961). https://doi.org/10.1139/v61-094
  44. S. Geran, P. Chamelot, J. Serp, M. Gibilaro, and L. Massot, "Electrochemistry of Uranium in Molten LiCl-LiF", Electrochim. Acta, 355, 136784 (2020). https://doi.org/10.1016/j.electacta.2020.136784
  45. C. Hamel, P. Chamelot, A. Laplace, E. Walle, O. Dugne, and P. Taxil, "Reduction Process of Uranium(IV) and Uranium(III) in Molten Fluorides", Electrochim. Acta, 52(12), 3995-4003 (2007). https://doi.org/10.1016/j.electacta.2006.11.018
  46. R.O. Hoover, M.R. Shaltry, S. Martin, K. Sridharan, and S. Phongikaroon, "Electrochemical Studies and Analysis of 1-10wt% UCl3 Concentrations in Molten LiCl-KCl Eutectic", J. Nucl. Mater., 452(1-3), 389-396 (2014). https://doi.org/10.1016/j.jnucmat.2014.05.057
  47. D. Inman, G.J. Hills, L. Young, and J.O. Bockris, "Electrode Reactions in Molten Salts: The Uranium + Uranium Trichloride System", Trans. Faraday Soc., 55, 1904 (1959). https://doi.org/10.1039/TF9595501904
  48. M. Korenko, M. Straka, L. Szatmary, M. Ambrova, and J. Uhlir, "Electrochemical Separation of Uranium in the Molten System LiF-NaF-KF-UF4", J. Nucl. Mater., 440(1-3), 332-337 (2013). https://doi.org/10.1016/j.jnucmat.2013.04.078
  49. S.A. Kuznetsov, H. Hayashi, K. Minato, and M. Gaune-Escard, "Electrochemical Transient Techniques for Determination of Uranium and Rare-earth Metal Separation Coefficients in Molten Salts", Electrochim. Acta, 51(12), 2463-2470 (2006). https://doi.org/10.1016/j.electacta.2005.07.028
  50. A. Leseur. Chrono-potentiometry in Molten Chlorides. Application to the Study of the Electrochemical Properties of Uranium and Plutonium in the LiCl-KCl Eutectic; Chronopotentiometrie dans les chlorures fondus. Application a l'etude des proprietes electrochimiques de l'uranium et du plutonium dans l'eutectique LiCl-KCl, CEA Fontenay-aux-Roses Report, CEA R-3793 (1969).
  51. K.H. Lim, S. Park, and J.I. Yun, "Study on Exchange Current Density and Transfer Coefficient of Uranium in LiCl-KCl Molten Salt", J. Electrochem. Soc., 162(14), E334-E337 (2015). https://doi.org/10.1149/2.0571514jes
  52. G. Mamantov and D.L. Manning, "Voltammetry and Related Studies of Uranium in Molten Lithium Fluoride- Beryllium Fluoride-Zirconium Fluoride", Anal. Chem., 38(11), 1494-1498 (1966). https://doi.org/10.1021/ac60243a010
  53. P. Masset, D. Bottomley, R. Konings, R. Malmbeck, A. Rodrigues, J. Serp, and J.P. Glatz, "Electrochemistry of Uranium in Molten LiCl-KCl Eutectic", J. Electrochem. Soc., 152(6), A1109-A1115 (2005). https://doi.org/10.1149/1.1901083
  54. P. Masset, R.J.M. Konings, R. Malmbeck, J. Serp, and J.P. Glatz, "Thermochemical Properties of Lanthanides (Ln=La, Nd) and Actinides (An=U, Np, Pu, Am) in the Molten LiCl-KCl Eutectic", J. Nucl. Mater., 344(1-3), 173-179 (2005). https://doi.org/10.1016/j.jnucmat.2005.04.038
  55. B.P. Reddy, S. Vandarkuzhali, T. Subramanian, and P. Venkatesh, "Electrochemical Studies on the Redox Mechanism of Uranium Chloride in Molten LiCl-KCl Eutectic", Electrochim. Acta, 49(15), 2471-2478 (2004). https://doi.org/10.1016/j.electacta.2004.02.002
  56. Y. Sakamura, T. Hijikata, K. Kinoshita, T. Inoue, T.S. Storvick, C.L. Krueger, J.J. Roy, D.L. Grimmett, S.P. Fusselman, and R.L. Gay, "Measurement of Standard Potentials of Actinides (U, Np, Pu, Am) in LiCl-KCl Eutectic Salt and Separation of Actinides From Rare Earths by Electrorefining", J. Alloys Compd., 271-273, 592-596 (1998). https://doi.org/10.1016/S0925-8388(98)00166-2
  57. M.R. Shaltry, R.O. Hoover, and G.L. Fredrickson, "Kinetic Parameters and Diffusivity of Uranium in FLiNaK and ClLiK", J. Electrochem. Soc., 167(11), 116502 (2020). https://doi.org/10.1149/1945-7111/ab9ef0
  58. O. Shirai, T. Iwai, Y. Suzuki, Y. Sakamura, and H. Tanaka, "Electrochemical Behavior of Actinide Ions in LiCl-KCl Eutectic Melts", J. Alloys Compd., 271-273, 685-688 (1998). https://doi.org/10.1016/S0925-8388(98)00187-X
  59. M.M. Tylka, J.L. Willit, J. Prakash, and M.A. Williamson, "Application of Voltammetry for Quantitative Analysis of Actinides in Molten Salts", J. Electrochem. Soc., 162(12), H852 (2015). https://doi.org/10.1149/2.0281512jes
  60. M.M. Tylka, J.L. Willit, J. Prakash, and M.A. Williamson, "Method Development for Quantitative Analysis of Actinides in Molten Salts", J. Electrochem. Soc., 162(9), H625 (2015). https://doi.org/10.1149/2.0401509jes
  61. Y.H. Jia, H. He, R.H. Lin, H.B. Tang, and Y.Q. Wang, "Electrochemical Behavior of Uranium(III) in NaCl- KCl Molten Salt", J. Radioanal. Nucl. Chem., 303(3), 1763-1770 (2015).
  62. D. Yoon, Electrochemical Studies of Cerium and Uranium in LiCl-KCl Eutectic for Fundamentals of Pyroprocessing Technology, VCU Dissertation, Virginia Commonwealth University (2016).
  63. D. Yoon and S. Phongikaroon, "Electrochemical and Thermodynamic Properties of UCl3 in LiCl-KCl Eutectic Salt System and LiCl-KCl-GdCl3 System", J. Electrochem. Soc., 164(9), E217 (2017). https://doi.org/10.1149/2.0411709jes
  64. D. Yoon and S. Phongikaroon, "Measurement and Analysis of Exchange Current Density for U/U3+ Reaction in LiCl-KCl Eutectic Salt via Various Electrochemical Techniques", Electrochim. Acta, 227, 170-179 (2017). https://doi.org/10.1016/j.electacta.2017.01.011
  65. J. Zhang, "Electrochemistry of Actinides and Fission Products in Molten Salts-Data Review", J. Nucl. Mater., 447(1-3), 271-284 (2014). https://doi.org/10.1016/j.jnucmat.2013.12.017
  66. Y. Castrillejo, M.R. Bermejo, E. Barrado, A.M. Martinez, and P. Diaz Arocas, "Solubilization of Rare Earth Oxides in the Eutectic LiCl-KCl Mixture at 450℃ and in the Equimolar CaCl2-NaCl Melt at 550℃", J. Electroanal. Chem., 545, 141-157 (2003). https://doi.org/10.1016/S0022-0728(03)00092-5
  67. Y. Castrillejo, M.R. Bermejo, P. Diaz Arocas, A.M. Martinez, and E. Barrado, "Electrochemical Behaviour of Praseodymium (III) in Molten Chlorides", J. Electroanal. Chem., 575(1), 61-74 (2005). https://doi.org/10.1016/j.jelechem.2004.08.020
  68. Y. Castrillejo, M.R. Bermejo, A.M. Martinez, and A. Diaz, "Electrochemical Behavior of Lanthanum and Yttrium Ions in Two Molten Chlorides With Different Oxoacidic Properties: The Eutectic LiCl-KCl and the Equimolar Mixture CaCl2-NaCl", J. Min. Metall. B, 39(1-2), 109-135 (2003). https://doi.org/10.2298/JMMB0302109C
  69. Y. Castrillejo, M.R. Bermejo, R. Pardo, and A.M. Martinez, "Use of Electrochemical Techniques for the Study of Solubilization Processes of Cerium-Oxide Compounds and Recovery of the Metal From Molten Chlorides", J. Electroanal. Chem., 522(2), 124-140 (2002). https://doi.org/10.1016/S0022-0728(02)00717-9
  70. Y. Castrillejo, C. de la Fuente, M. Vega, F. de la Rosa, R. Pardo, and E. Barrado, "Cathodic Behaviour and Oxoacidity Reactions of Samarium (III) in Two Molten Chlorides With Different Acidity Properties: The Eutectic LiCl-KCl and the Equimolar CaCl2-NaCl Melt", Electrochim. Acta, 97, 120-131 (2013). https://doi.org/10.1016/j.electacta.2013.02.115
  71. D.S. Poa, Z. Tomczuk, and R.K. Steunenberg, "Voltammetry of Uranium and Plutonium in Molten LiCl-NaCl-CaCl2-BaCl2", J. Electrochem. Soc., 135(5), 1161 (1988). https://doi.org/10.1149/1.2095904
  72. M.L. Newton, D.E. Hamilton, and M.F. Simpson, "Methods of Redox Control and Measurement in Molten NaCl-CaCl2-UCl3", ECS Trans., 98(10), 19 (2020). https://doi.org/10.1149/09810.0019ecst
  73. H. Zhang, S. Choi, D.E. Hamilton, and M.F. Simpson, "Electroanalytical Measurements of UCl3 and CeCl3 in Molten NaCl-CaCl2", J. Electrochem. Soc., 168(5), 056521 (2021). https://doi.org/10.1149/1945-7111/ac0222
  74. S.E. Bae, Y.H. Cho, Y.J. Park, H.J. Ahn, and K. Song, "Oxidation State Shift of Uranium During U(III) Synthesis With Cd(II) and Bi(III) in LiCl-KCl Melt", Electrochem. Solid-State Lett., 13(10), F25 (2010). https://doi.org/10.1149/1.3465303
  75. Y.H. Cho, S.E. Bae, D.H. Kim, T.H. Park, J.Y. Kim, K. Song, and J.W. Yeon, "On the Covalency of U(III)-Cl, U(IV)-Cl Bonding in a LiCl-KCl Eutectic Melt at 450℃: Spectroscopic Evidences From Their 5f-6d and 5f-5f Electronic Transitions", Microchem. J., 122, 33-38 (2015). https://doi.org/10.1016/j.microc.2015.04.001
  76. D. Han, C. She, Y. Niu, X. Yang, J. Geng, R. Cui, L. Sun, C. Hu, Y. Liu, T. Su, H. Liu, W. Huang, Y. Gong, and Q. Li, "The Oxidation of UF4 in FLiNaK Melt and its Electrolysis", J. Radioanal. Nucl. Chem., 319(3), 899-906 (2019). https://doi.org/10.1007/s10967-019-06416-w
  77. B.Y. Kim, D.H. Lee, J.Y. Lee, and J.I. Yun, "Electrochemical and Spectroscopic Investigations of Tb(III) in Molten LiCl-KCl Eutectic at High Temperature", Electrochem. Commun., 12(8), 1005-1008 (2010). https://doi.org/10.1016/j.elecom.2010.05.009
  78. H. Lambert, T. Kerry, and C.A. Sharrad, "Preparation of Uranium(III) in a Molten Chloride Salt: A Redox Mechanistic Study", J. Radioanal. Nucl. Chem., 317(2), 925-932 (2018). https://doi.org/10.1007/s10967-018-5953-7
  79. A.R. Lee and B.G. Park, "A Study on Electrochemical Behaviors of Samarium Ions in the Molten LiCl-KCl Eutectic Using Optically Transparent Electrode", J. Nucl. Fuel Cycle Waste Technol., 15(4), 313-320 (2017). https://doi.org/10.7733/JNFCWT.2017.15.4.313
  80. Y.L. Liu, L.Y. Yuan, L.R. Zheng, L. Wang, B.L. Yao, Z.F. Chai, and W.Q. Shi, "Confirmation and Elimination of Cyclic Electrolysis of Uranium Ions in Molten Salts", Electrochem. Commun., 103, 55-60 (2019). https://doi.org/10.1016/j.elecom.2019.05.009
  81. T.H. Park, D.H. Kim, S.E. Bae, J.Y. Kim, and Y.H. Cho, "Absorption Spectroscopic Observation of Interactions Between Neptunium and Oxide Ions in Molten LiCl-KCl Eutectic", Prog. Nucl. Sci. Technol., 5, 44-47 (2018). https://doi.org/10.15669/pnst.5.44
  82. Y.J. Park, S.E. Bae, Y.H. Cho, J.Y. Kim, and K. Song, "UV-vis Absorption Spectroscopic Study for On-line Monitoring of Uranium Concentration in LiCl-KCl Eutectic Salt", Microchem. J., 99(2), 170-173 (2011). https://doi.org/10.1016/j.microc.2011.04.013
  83. I.B. Polovov, C.A. Sharrad, I. May, B.D. Vasin, V.A. Volkovich, and T.R. Griffiths, "Spectroelectrochemical Study of Uranium and Neptunium in LiCl-KCl Eutectic Melt", ECS Trans., 3(35), 503 (2007). https://doi.org/10.1149/1.2798693
  84. I.B. Polovov, C.A. Sharrad, I. May, V.A. Volkovich, and B.D. Vasin, "Spectroelectrochemical Study of Neptunium in Molten LiCl-KCl Eutectic", Z. Naturforsch., 62(12), 745-748 (2007).
  85. I.B. Polovov, V.A. Volkovich, J.M. Charnock, B. Kralj, R.G. Lewin, H. Kinoshita, I. May, and C.A. Sharrad, "In Situ Spectroscopy and Spectroelectrochemistry of Uranium in High-Temperature Alkali Chloride Molten Salts", Inorg. Chem., 47(17), 7474-7482 (2008). https://doi.org/10.1021/ic701415z
  86. C.A. Schroll, S. Chatterjee, T. Levitskaia, W.R. Heineman, and S.A. Bryan, "Spectroelectrochemistry of EuCl3 in Four Molten Salt Eutectics: 3LiCl-NaCl, 3LiCl-2KCl, LiCl-RbCl, and 3LiCl-2CsCl; at 873 K", Electroanalysis, 28(9), 2158-2165 (2016). https://doi.org/10.1002/elan.201600048
  87. C.A. Schroll, S. Chatterjee, T.G. Levitskaia, W.R. Heineman, and S.A. Bryan, "Electrochemistry and Spectroelectrochemistry of Europium(III) Chloride in 3LiCl-2KCl From 643 to 1123 K", Anal. Chem., 85(20), 9924-9931 (2013). https://doi.org/10.1021/ac402518p
  88. A. Uehara, O. Shirai, T. Nagai, T. Fujii, and H. Yamana, "Spectroelectrochemistry and Electrochemistry of Europium Ions in Alkali Chloride Melts", Z. Naturforsch., 62(3-4), 191-196 (2007). https://doi.org/10.1515/zna-2007-3-412
  89. V.A. Volkovich, A.B. Ivanov, A.A. Sobolev, B.D. Vasin, and T.R. Griffiths, "An Electrochemical and Spectroelectrochemical Study of Ln(II) (Ln= Sm, Eu, Yb) Species in NaCl-2CsCl Melt", ECS Trans., 64(4), 617 (2014). https://doi.org/10.1149/06404.0617ecst
  90. B.Y. Kim and J.I. Yun, "Reduction of Trivalent Europium in Molten LiCl-KCl Eutectic Observed by In-Situ Laser Spectroscopic Techniques", ECS Electrochem. Lett., 2(11), H54 (2013). https://doi.org/10.1149/2.013311eel
  91. D.H. Kim, T.H. Park, S.E. Bae, N. Lee, J.Y. Kim, Y.H. Cho, J.W. Yeon, and K. Song, "Electrochemical Preparation and Spectroelectrochemical Study of Neptunium Chloride Complexes in LiCl-KCl Eutectic Melts", J. Radioanal. Nucl. Chem., 308(1), 31-36 (2016). https://doi.org/10.1007/s10967-015-4321-0
  92. J. McDuffee, R. Christensen, D. Eichel, M. Simpson, S. Phongikaroon, X. Sun, J. Baird, A. Burak, S. Chapel, J. Choi, J. Gorton, D.E. Hamilton, D. Killinger, S. Miller, J. Palmer, C. Petrie, D. Sweeney, A. Schrell, and J. Vollmer, "Design and Control of a Fueled Molten Salt Cartridge Experiment for the Versatile Test Reactor", Nucl. Sci. Eng., (ahead-of-print), 1-26 (2022).