Acknowledgement
본 연구는 산업통상자원부 산업연계형저탄소공정전환핵심기술개발사업(과제번호 : RS-2022-00155175), 한국화학연구원 전략과제(SS2221-20) 및 중앙대학교 연구장학금의 지원을 받아 진행되었으며 이에 감사드립니다.
References
- E. A. Goldstein, A. P. Raman, and S. Fan, "Sub-Ambient Non-Evaporative Fluid Cooling with the Sky", Nat. Energy, 2, 17143 (2017). https://doi.org/10.1038/nenergy.2017.143
- X. Yu, J. Chan, and C. Chen, "Review of Radiative Cooling Materials: Performance Evaluation and Design Approaches", Nano Energy, 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
- S. Fan and W. Li, "Photonics and Thermodynamics Concepts in Radiative Cooling", Nat. Photonics, 16, 182 (2022). https://doi.org/10.1038/s41566-021-00921-9
- Y. Zhang, X. Chen, B. Cai, H. Luan, Q. Zhang, and M. Gu, "Photonics Empowered Passive Radiative Cooling", Adv. Photonics Res., 2, 202000106 (2021).
- M. M. Hossain and M. Gu, "Radiative Cooling: Principles, Progress, and Potentials", Adv. Sci., 3, 1 (2016).
- K. Te Lin, J. Han, K. Li, C. Guo, H. Lin, and B. Jia, "Radiative Cooling: Fundamental Physics, Atmospheric Influences, Materials and Structural Engineering, Applications and Beyond", Nano Energy, 80, 105517 (2021). https://doi.org/10.1016/j.nanoen.2020.105517
- B. Zhao, M. Hu, X. Ao, N. Chen, and G. Pei, "Radiative Cooling: A Review of Fundamentals, Materials, Applications, and Prospects", Appl. Energy, 236, 489 (2019). https://doi.org/10.1016/j.apenergy.2018.12.018
- C. G. Granqvist and A. Hjortsberg, "Radiative Cooling to Low Temperatures: General Considerations and Application to Selectively Emitting SiO Films", J. Appl. Phys., 52, 4205 (1981). https://doi.org/10.1063/1.329270
- S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, "The Radiative Cooling of Selective Surfaces", Sol. Energy, 17, 83 (1975). https://doi.org/10.1016/0038-092X(75)90062-6
- B. Orel, M. K. Gunde, and A. Krainer, "Radiative Cooling Efficiency of White Pigmented Paints", Sol. Energy, 50, 477 (1993). https://doi.org/10.1016/0038-092X(93)90108-Z
- A. R. Gentle and G. B. Smith, "Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles", Nano Lett., 10, 373 (2010). https://doi.org/10.1021/nl903271d
- D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, and R. Yang, "Radiative Sky Cooling: Fundamental Principles, Materials, and Applications", Appl. Phys. Rev., 6, 021306 (2019). https://doi.org/10.1063/1.5087281
- W. Li and S. Fan, "Radiative Cooling: Harvesting the Coldness of the Universe", Opt. Photonics News, 30, 32 (2019).
- A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, "Passive Radiative Cooling below Ambient Air Temperature under Direct Sunlight", Nature, 515, 540 (2014). https://doi.org/10.1038/nature13883
- E. Rephaeli, A. Raman, and S. Fan, "Ultrabroadband Photonic Structures to Achieve High-Performance Daytime Radiative Cooling". Nano Lett., 13, 1457 (2013). https://doi.org/10.1021/nl4004283
- L. Zhu, A. Raman, and S. Fan, "Color-Preserving Daytime Radiative Cooling", Appl. Phys. Lett., 103, 22 (2013).
- M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, "Passive Radiative Cooling Design with Broadband Optical Thin-Film Filters", J. Quant. Spectrosc. Radiat. Transf., 198, 1339 (2017).
- S. Y. Jeong, C. Y. Tso, J. Ha, Y. M. Wong, C. Y. H. Chao, B. Huang, and H. Qiu, "Field Investigation of a Photonic Multi-Layered TiO2 Passive Radiative Cooler in Sub-Tropical Climate", Renewable Energy, 146, 44 (2020). https://doi.org/10.1016/j.renene.2019.06.119
- Y. Zhou, Y. Liu, Y. Li, R. Jiang, W. Li, W. Zhao, R. Mao, L. Deng, and P. Zhou, "Flexible Radiative Cooling Material Based on Amorphous Alumina Nanotubes", Opt. Mater. Express, 10, 1641 (2020). https://doi.org/10.1364/ome.392241
- M. M. Hossain, B. Jia, and M. A. Gu, "Metamaterial Emitter for Highly Efficient Radiative Cooling", Adv. Opt. Mater., 3, 1047 (2015). https://doi.org/10.1002/adom.201500119
- Y. Huang, M. Pu, Z. Zhao, X. Li, X. Ma, and X. Luo, "Broadband Metamaterial as an "Invisible" Radiative Cooling Coat", Opt. Commun., 407, 204 (2018). https://doi.org/10.1016/j.optcom.2017.09.036
- Y. Fu, J. Yang, Y. S. Su, W. Du, and Y. G. Ma, "Daytime Passive Radiative Cooler Using Porous Alumina". Sol. Energy Mater. Sol. Cells, 191, 50x (2019).
- J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, "Hierarchically Porous Polymer Coatings for Highly Efficient Passive Daytime Radiative Cooling", 362, 315 (2018). https://doi.org/10.1126/science.aat9513
- Y. Xu, B. Sun, Y. Ling, Q. Fei, Z. Chen, X. Li, P. Guo, N. Jeon, S. Goswami, Y. Liao, S. Ding, Q. Yu, J. Lin, G. Huang, and Z. Yan, "Multiscale Porous Elastomer Substrates for Multifunctional On-Skin Electronics with Passive-Cooling Capabilities", Proc. Natl. Acad. Sci. U. S. A., 117, 205 (2020). https://doi.org/10.1073/pnas.1917762116
- A. Leroy, B. Bhatia, C. C. Kelsall, A. Castillejo-Cuberos, M. H. Di Capua, L. Zhao, L. Zhang, A. M. Guzman, and E. N. Wang, "High-Performance Subambient Radiative Cooling Enabled by Optically Selective and Thermally Insulating Polyethylene Aerogel", Sci. Adv., 5, 1 (2019).
- M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, N. Zhao, M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, and N. Zhao, "Generalized Bioinspired Approach to a Daytime Radiative Cooling "Skin", 12, 25286 (2020). https://doi.org/10.1021/acsami.0c03897
- M. Yang, W. Zou, J. Guo, Z. Qian, H. Luo, S. Yang, N. Zhao, L. Pattelli, J. Xu, and D. S. Wiersma, "Bioinspired "Skin" with Cooperative Thermo-Optical Effect for Daytime Radiative Cooling", ACS Appl. Mater. Interfaces, 12, 25286 (2020). https://doi.org/10.1021/acsami.0c03897
- J. Wang, J. Sun, T. Guo, H. Zhang, M. Xie, J. Yang, X. Jiang, Z. Chu, D. Liu, and S. Bai, "High-Strength Flexible Membrane with Rational Pore Architecture as a Selective Radiator for High-Efficiency Daytime Radiative Cooling", Adv. Mater. Technol., 7, 1 (2022).
- T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen, and L. A. Wu, "Structural Polymer for Highly Efficient All-Day Passive Radiative Cooling", Nat. Commun., 12, 1 (2021). https://doi.org/10.1038/s41467-020-20314-w
- D. Li, X. Liu, W. Li, Z. Lin, B. Zhu, Z. Li, J. Li, B. Li, and S. Fan, "Scalable and Hierarchically Designed Polymer Film as a Selective Thermal Emitter for High-Performance All-Day Radiative Cooling", Nat. Nanotechnol, 16, 153 (2021). https://doi.org/10.1038/s41565-020-00800-4
- S. Meng, L. Long, Z. Wu, N. Denisuk, Y. Yang, L. Wang, F. Cao, and Y. Zhu, "Scalable Dual-Layer Film with Broadband Infrared Emission for Sub-Ambient Daytime Radiative Cooling", Sol. Energy Mater. Sol. Cells, 208, 110393 (2020). https://doi.org/10.1016/j.solmat.2020.110393
- A. Aili, Z. Y. Wei, Y. Z. Chen, D. L. Zhao, R. G. Yang, and X. B. Yin, "Selection of Polymers with Functional Groups for Daytime Radiative Cooling", Mater. Today Phys., 10, 100127 (2019). https://doi.org/10.1016/j.mtphys.2019.100127
- S. Son, S. Jeon, D. Chae, S. Y. Lee, Y. Liu, H. Lim, S. J. Oh, and H. Lee, "Colored Emitters with Silica-Embedded Perovskite Nanocrystals for Efficient Daytime Radiative Cooling", Nano Energy, 79, 105461 (2021). https://doi.org/10.1016/j.nanoen.2020.105461
- S. Y. Jeong, C. Y. Tso, Y. M. Wong, C. Y. H. Chao, and B. Huang, "Daytime Passive Radiative Cooling by Ultra Emissive Bio-Inspired Polymeric Surface", Sol. Energy Mater. Sol. Cells, 206, 110296 (2020). https://doi.org/10.1016/j.solmat.2019.110296
- H. Zhang, K. C. S. Ly, X. Liu, Z. Chen, M. Yan, Z. Wu, X. Wang, Y. Zheng, H. Zhou, and T. Fan, "Biologically Inspired Flexible Photonic Films for Efficient Passive Radiative Cooling", Proc. Natl. Acad. Sci. U. S. A. 117, 14657 (2020). https://doi.org/10.1073/pnas.2001802117
- R. A. Yalcin, E. Blandre, K. Joulain, and J. Drevillon, "Daytime Radiative Cooling with Silica Fiber Network", Sol. Energy Mater. Sol. Cells, 206, 110320 (2020). https://doi.org/10.1016/j.solmat.2019.110320
- W. Z. Song, X. X. Wang, H. J. Qiu, N. Wang, M. Yu, Z. Fan, S. Ramakrishna, H. Hu, and Y. Z. Long, "Single Electrode Piezoelectric Nanogenerator for Intelligent Passive Daytime Radiative Cooling", Nano Energy, 82, 105695 (2021). https://doi.org/10.1016/j.nanoen.2020.105695
- X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang, H. Zhou, and T. Fan, "Scalable Flexible Hybrid Membranes with Photonic Structures for Daytime Radiative Cooling", Adv. Funct. Mater., 30, 1 (2020).
- H. Kim, S. McSherry, B. Brown, and A. Lenert, "Selectively Enhancing Solar Scattering for Direct Radiative Cooling through Control of Polymer Nanofiber Morphology", ACS Appl. Mater. Interfaces, 12, 43553 (2020). https://doi.org/10.1021/acsami.0c09374
- L. Cai, A. Y. Song, W. Li, P. C. Hsu, D. Lin, P. B. Catrysse, Y. Liu, Y. Peng, J. Chen, H. Wang, J. Xu, A. Yang, S. Fan, and Y. Cui, "Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling", Adv. Mater., 30, 1 (2018).
- B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu, H. Min, S. Tang, and X. Meng, "3D Porous Polymer Film with Designed Pore Architecture and Auto-Deposited SiO2 for Highly Efficient Passive Radiative Cooling", Nano Energy, 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
- Z. Cheng, H. Han, F. Wang, Y. Yan, X. Shi, H. Liang, X. Zhang, and Y. Shuai, "Efficient Radiative Cooling Coating with Biomimetic Human Skin Wrinkle Structure", Nano Energy, 89, 106377 (2021). https://doi.org/10.1016/j.nanoen.2021.106377
- A. Sachenko, V. Kostylyov, I. Sokolovskyi, and M. Evstigneev, "Effect of Temperature on Limit Photoconversion Efficiency in Silicon Solar Cells", IEEE J. Photovoltaics, 10, 63 (2020). https://doi.org/10.1109/jphotov.2019.2949418
- T. S. Safi and J. N. Munday, "Improving Photovoltaic Performance through Radiative Cooling in Both Terrestrial and Extraterrestrial Environments", Opt. Express, 23, 1120 (2015).
- L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, "Radiative Cooling of Solar Cells", Optica, 1, 32 (2014). https://doi.org/10.1364/optica.1.000032
- L. Zhu, A. P. Raman, and S. Fan, "Radiative Cooling of Solar Absorbers Using a Visibly Transparent Photonic Crystal Thermal Blackbody", Proc. Natl. Acad. Sci. U. S. A., 112, 12282 (2015). https://doi.org/10.1073/pnas.1509453112
- Z. Zhou, Z. Wang, and P. Bermel, "Radiative Cooling for Low-Bandgap Photovoltaics under Concentrated Sunlight", Opt. Express, 27, A404 (2019). https://doi.org/10.1364/oe.27.00a404
- S. Y. Heo, D. H. Kim, Y. M. Song, and G. J. Lee, "Determining the Effectiveness of Radiative Cooler-Integrated Solar Cells", Adv. Energy Mater., 12, 103258 (2022).
- M. Muselli, "Passive Cooling for Air-Conditioning Energy Savings with New Radiative Low-Cost Coatings", Energy Build., 42, 945 (2010). https://doi.org/10.1016/j.enbuild.2010.01.006
- A. R. Gentle, J. L. C. Aguilar, and G. B. Smith, "Optimized Cool Roofs: Integrating Albedo and Thermal Emittance with R-Value", Sol. Energy Mater. Sol. Cells, 95, 3207 (2011). https://doi.org/10.1016/j.solmat.2011.07.018
- X. Nie, Y. Yoo, H. Hewakuruppu, J. Sullivan, A. Krishna, and J. Lee, "Cool White Polymer Coatings Based on Glass Bubbles for Buildings", Sci. Rep., 10, 1 (2020). https://doi.org/10.1038/s41598-019-56847-4
- A. R. Gentle and G. B. Smith, "A Subambient Open Roof Surface under the Mid-Summer Sun", Adv. Sci. 2015, 2, 2-5. https://doi.org/10.1002/advs.201500119.
- X. A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng, Y. Wang, S. Deng, X. Wu, Z. Wu, M. Ouyang, and Y. H. Wang, "Dynamic Gating of Infrared Radiation in a Textile", Science, 363, 619 (2019). https://doi.org/10.1126/science.aau1217
- L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou, P. Wu, D. Lin, S. Fan, and Y. Cui, "Temperature Regulation in Colored Infrared-Transparent Polyethylene Textiles", Joule, 3, 1478 (2019). https://doi.org/10.1016/j.joule.2019.03.015
- P. C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, "Personal Thermal Management by Metallic Nanowire-Coated Textile", Nano Lett., 15, 365 (2015). https://doi.org/10.1021/nl5036572
- P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, "Radiative Human Body Cooling by Nanoporous Polyethylene Textile", Science, 353, 1019 (2016). https://doi.org/10.1126/science.aaf5471
- S. Khan, J. Kim, K. Roh, G. Park, and W. Kim, "High Power Density of Radiative-Cooled Compact Thermoelectric Generator Based on Body Heat Harvesting", Nano Energy, 87, 106180 (2021). https://doi.org/10.1016/j.nanoen.2021.106180