Acknowledgement
본 연구는 산업통상자원부 산하 한국산업기술평가관리원이 연구 지원한 소재부품기술개발사업(20014546, 20004044)의 일환으로 수행되었기에 감사드립니다.
References
- J. Zeng, R. Fu, Y. Shen, H. He, and X. Song, "High thermal conductive epoxy molding compound with thermal conductive pathway", J. Appl. Polym. Sci., 113, 2117 (2009). https://doi.org/10.1002/app.30045
- N. Srikanth, L. Chan, amd C. J. Vath, "Adhesion improvement of EMC-leadframe interface using brown oxide promoters", Thin Solid Films, 504, 397 (2006). https://doi.org/10.1016/j.tsf.2005.09.100
- L. Duo, Z. Zhang, K. Zheng, D. Wang, C. Xu, and Y. Xia, "Perhydropolysilazane derived SiON interfacial layer for Cu/epoxy molding compound composite", Surf. Coat. Technol., 391, 125703 (2020). https://doi.org/10.1016/j.surfcoat.2020.125703
- R. Furuno, Y. Takatuji, K. Kubo, and T. Haruyama, "Improvement of the adhesive strength of the leadframe and epoxy resin by forming organic molecules-metal composite interface", Electron. Commun. Jpn., 100, 67 (2017). https://doi.org/10.1002/ecj.11924
- M. Kitano, A. Nishimura, S. Kawai, and K. Nishi, "Analysis of package cracking during reflow soldering process", 26th Annual Proceedings Reliability Physics Symposium 1988, 90 (1988).
- M. Lebbai, J. K. Kim, and M. M. F. Yuen, "Effects of moisture and elevated temperature on reliability of interfacial adhesion in plastic packages", J. Electron. Mater, 32, 574 (2003). https://doi.org/10.1007/s11664-003-0144-9
- J. H. Roh, J. H. Lee, N. I. Kim, H. M. Kang, T. H. Yoon, and K. H. Song, "DSC analysis of epoxy molding compound with plasma polymer-coated silica fillers", J. Appl. Polym. Sci., 90, 2508 (2003). https://doi.org/10.1002/app.12914
- S. C. T. Kwok, and M. M. F. Yuen, "Potential-assisted assembly of thiol-based materials for reliable copper-epoxy interface", 2012 14th International Conference on Electronic Materials and Packaging, 1 (2012).
- H. Lin, and G. S. Frankel, "Atmospheric corrosion of Cu by UV, ozone and NaCl", Corros. Eng. Sci. Technol., 48, 461 (2013). https://doi.org/10.1179/1743278213Y.0000000104
- S. C. Chao, W. C. Huang, J. H. Liu, J. M. Song, P. Y. Shen, C. L Huang, L. T. Hung, and C. H. Chang, "Oxidation characteristics of commercial copper-based lead frame surface and the bonding with epoxy molding compounds", Microelectron. Reliab., 99, 161 (2019). https://doi.org/10.1016/j.microrel.2019.05.020
- S. M. Song, K. Cho, C. E. Park, H. K. Yun, and S. Y. Oh, "Synthesis and characterization of water-soluble polymeric adhesion promoter for epoxy resin/copper joints", J. Appl. Polym. Sci., 85, 2202 (2002). https://doi.org/10.1002/app.10837
- S. Luo, and C. P. Wong, "Effect of UV/ozone treatment on surface tension and adhesion in electronic packaging", IEEE Transactions on Components and Packaging Technologies, 24, 43 (2001). https://doi.org/10.1109/6144.910801
- J. Ding, C. Chen, and G. Xue, "The dynamic mechanical analysis of epoxy-copper powder composites using azole compounds as coupling agents", J. Appl. Polym. Sci., 42, 1459 (1991). https://doi.org/10.1002/app.1991.070420531
- N. Gladkikh, Y. Makarychev, M. Petrunin, M. Maleeva, L. Maksaeva, and A. Marshakov, "Synergistic effect of silanes and azole for enhanced corrosion protection of carbon steel by polymeric coatings", Prog. Org. Coat., 138, 105386 (2020). https://doi.org/10.1016/j.porgcoat.2019.105386
- S. M. Song, C. E. Park, H. K. Yun, C. S Hwang, S. Y. Oh, and J. M. Park, "Adhesion improvement of epoxy resin/copper lead frame joints by azole compounds", J. Adhes. Sci. Technol., 12, 541 (1998). https://doi.org/10.1163/156856198X00218
- J. Moon, Y. Huh, Y. Choe, and J. Bang, "Core-shell copolymer as highly effective additive for epoxy adhesives", Polymer(Korea), 45, 757 (2021).
- V. Pang, Z. J. Thompson, G. D. Joly, F. S. Bates, and L. F. Francis, "Adhesion strength of block copolymer toughened epoxy on aluminum", ACS Appl. Polym. Mater., 2, 464 (2019). https://doi.org/10.1021/acsapm.9b00909
- J. M. Dean, N. E. Verghese, H. Q. Pham, and F. S. Bates, "Nanostructure toughened epoxy resins", Macromolecules, 36, 9267 (2003). https://doi.org/10.1021/ma034807y
- C. Declet-Perez, E. M. Redline, L. F. Francis, and F. S. Bates, "Role of localized network damage in block copolymer toughened epoxies", ACS Macro Lett., 1, 338 (2012). https://doi.org/10.1021/mz200219y
- Y. S. Thio, J. Wu, and F. S. Bates, "Epoxy toughening using low molecular weight poly(hexylene oxide)-poly(ethylene oxide) diblock copolymers", Macromolecules, 39, 7187 (2006). https://doi.org/10.1021/ma052731v
- L. S. Son, H. N. Lee, and H. K. Lee, "Effect of Alkali Surface Modification on Adhesion Strength between Electroless-Plated Cu and Polyimide Films", J. Surf. Sci. Eng, 45, 8 (2012).
- G. Sharma, A. Kumar, M. Naushad, B. Thakur, D. V. N. Vo, B. Gao, A. A. Al-Kahtani, and F. J. Stadler, "Adsorptional-photocatalytic removal of fast sulphon black dye by using chitin-cl-poly(itaconic acid-co-acrylamide)/zirconium tungstate nanocomposite hydrogel", J. Hazard. Mater. Lett., 416, 125714 (2021). https://doi.org/10.1016/j.jhazmat.2021.125714
- S. N. A. M. Jamil, M. Khairuddin, and R. Daik, "Preparation of acrylonitrile/acrylamide copolymer beads via a redox method and their adsorption properties after chemical modification", e-Polymers, 15, 45 (2015). https://doi.org/10.1515/epoly-2014-0109
- S. Dan, S. Banivaheb, and H. Hashemipour, "Synthesis, characterization and absorption study of chitosan-g-poly(acrylamide-co-itaconic acid) hydrogel", Polym. Bull., 78, 1887 (2021). https://doi.org/10.1007/s00289-020-03190-8
- M. D. Olawale, J. A. Obaleye, and E. O. Oladele, "Itaconic acid based coordination polymer: mechanochemical synthesis, characterization and vapochromic study", Niger. J. Chem. Res., 8, 280 (2020).
- C. Erbil, and N. Uyanik, "Interactions between poly(acrylamide)-poly(itaconic acid) and cerium (IV)-nitrilotriacetic acid redox pair in the synthesis of acrylamide and itaconic acid homo-and copolymers", Polym. Int., 50, 792 (2001). https://doi.org/10.1002/pi.697
- Y. Aso, M. Sano, R. Yada, T. Tanaka, T. Aoki, H. Ohara, T. Kusukawa, K. Matsumoto, and K. Wada, "Biobased poly (itaconic acid-co-10-hydroxyhexylitaconic acid) s: synthesis and thermal characterization", Materials, 13, 2707 (2020). https://doi.org/10.3390/ma13122707
- S. Zhang, Y. Dang, X. Ni, C. Yuan, H. Chen, and A. Ju, "Preparation and stabilization of high molecular weight poly(acrylonitrile-co-2-methylenesuccinamic acid) for carbon fiber precursor", Polymers, 13, 3862 (2021). https://doi.org/10.3390/polym13223862
- Z. Abdollahi, and V. G. Gomes, "Synthesis and characterization of polyacrylamide with controlled molar weight, The University of Sydney NSW, Australia, 1 (2006).
- J. H. Yim, D. H. Kim, and Y. S. Ko, "Ring-opening polymerization of L-lactide with glycidol as initiator", Polymer(Korea), 37, 606 (2013).
- Y. C. Kim, O. J. Cha, and K. M. Kim, "Study on self-extinguishing epoxy resin composition", J. Adhes. Interface, 11, 168 (2010).
- M. S. Kim, H. Y. Kim, S. H. Yoo, J. H. Kim, and J. K. Kim, "Effect of curing agent on the curing behavior and joint strength of epoxy adhesive", J. KWJS, 29, 54 (2011).
- J. K. Lim, "Tensile, bending and shear strength distributions of adhesive-bonded butt joint specimens", Compos. Sci. Technol., 65, 1421 (2005). https://doi.org/10.1016/j.compscitech.2004.12.013