Acknowledgement
This work was supported by the "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ014360)," Rural Development Administration, Republic of Korea.
References
- Ahmed, Z.U., Panaullah, G.M., Gauch, H., McCouch, S.R., Tyagi, W., Kabir, M.S. and Duxbury, J.M. 2011. Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant and Soil. 338(1-2):367-382. https://doi.org/10.1007/s11104-010-0551-7
- Antoniadis, V., Shaheen, S.M., Levozou, E., Shahid, M., Niazi, N.K., Vithanage, M., Ok, Y.S., Bolan, N. and Rinklebe, J. 2019. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?-A review. Environment International. 127:819-847. https://doi.org/10.1016/j.envint.2019.03.039
- Bhattacharya, P., Samal, A.C., Majumdar, J. and Santra, S.C. 2010. Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy and Water Environment. 8(1):63-70. https://doi.org/10.1007/s10333-009-0180-z
- Cappuyns, V., Herreweghe, S.V., Swennen, R., Ottenburgs, R. and Deckers, J. 2002. Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). Science of the Total Environment. 295:217-240. https://doi.org/10.1016/S0048-9697(02)00096-7
- Chen, Y., Moore, K.L., Miller, A.J., McGrath, S.P., Ma, J.F. and Zhao, F.J. 2015. The role of nodes in arsenic storage and distribution in rice. Journal of Experimental Botany. 66(13):3717-3724. https://doi.org/10.1093/jxb/erv164
- Dradrach, A., Karczewska, A. and Szopka, K. 2020. Arsenic accumulation by red fescue (Festuca rubra) growing in mine affected soils-Findings from the field and greenhouse studies. Chemosphere. 248:126045. https://doi.org/10.1016/j.chemosphere.2020.126045
- Finnegan, P.M. and Chen, W. 2012. Arsenic toxicity: The effects on plant metabolism. Frontiers in Physiology. 3:182. https://doi.org/10.3389/fphys.2012.00182
- Han, K.W., Cho, J.Y. and You, Y.S. 1997. Several factors on growth of radish and absorption and translocation of chromium. Korean Journal of Soil Science and Fertilizer. 30(4):370-376.
- Jung, H.I., Chae, M.J., Lee, T.J., Yoon, J.H., Kim, M.S., Jeon, S. and Kim, H.S. 2021. Soil Nutrient and Rice (Oryza sativa L.) Growth Characteristics under Different Arsenic Contamination Levels. Korean Journal of Soil Science and Fertilizer. 54(4):601-609. https://doi.org/10.7745/KJSSF.2021.54.4.601
- Jung, H.I., Lee, J., Chae, M.J., Kong, M.S., Lee, C.H., Kang, S.S. and Kim, Y.H. 2017. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.). Environmental Monitoring and Assessment. 189:638. https://doi.org/10.1007/s10661-017-6350-3
- Kaya, C., Ashraf, M., Alyemeni, M.N., Corpas, F.J. and Ahmad, P. 2020. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. Journal of Hazardous Materials. 399:123020. https://doi.org/10.1016/j.jhazmat.2020.123020
- Kumarathilaka, P., Seneweera, S., Meharg, A. and Bundschuh, J. 2018. Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Science of the Total Environment. 642:485-496. https://doi.org/10.1016/j.scitotenv.2018.06.030
- Meharg, A.A. and Rahman, M.M. 2003. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environmental Science and Technology. 37(2):229-234. https://doi.org/10.1021/es0259842
- NAS. 2019. Fertilizer recommendation for crop production (4th ed.). National Institute of Agricultural Science. RDA. Wanju. Korea.
- Norton, G.J., Duan, G., Dasgupta, T., Islam, M.R., Lei, M., Zhu, Y., Deacon, C.M., Moran, A.C., Islam, S., Zhao, F.J., Stroud, J.L., McGrath, S.P., Feldmann, J., Price, A.H. and Meharg, A.A. 2009. Environmental and genetic control of arsenic accumulation and speciation in rice grain: Comparing a range of common cultivars crown in contaminated sites across Bangladesh, China, and India. Environmental Science and Technology. 43(21):8381-8386. https://doi.org/10.1021/es901844q
- RDA. 2012. Analysis standard for research in agricultural science and technology. RDA. Suwon. Korea.
- Roychowdhury, T., Uchino, T., Tokunaga, H. and Ando, M. 2002. Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food and Chemical Toxicology. 40(11):1611-1621. https://doi.org/10.1016/S0278-6915(02)00104-7
- Siddiqui, M.H., Alamri, S., Khan, M.N., Corpas, F.J., Al-Amri, A.A., Alsubaie, Q.D., Ali, H.M., Kalaji, H.M. and Ahmad, P. 2020. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. Journal of Hazardous Materials. 398:122882. https://doi.org/10.1016/j.jhazmat.2020.122882
- Verma, G., Srivastava, D., Narayan, S., Shirke, P.A. and Chakrabarty, D. 2020. Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.). Ecotoxicology Environmental Safety. 201:110735. https://doi.org/10.1016/j.ecoenv.2020.110735
- Ye, X.X., Sun, B. and Yin, Y.L. 2012. Variation of As concentration between soil types and rice genotypes and the selection of cultivars for reducing As in the diet. Chemosphere. 87(4):384-389. https://doi.org/10.1016/j.chemosphere.2011.12.028
- Zhu, Y.G., Williams, P.N. and Meharg, A.A. 2008. Exposure to inorganic arsenic from rice: A global health issue? Environmental Pollution. 154(2):169-171. https://doi.org/10.1016/j.envpol.2008.03.015