DOI QR코드

DOI QR Code

Effect of two temperature and energy dissipation in an axisymmetric modified couple stress isotropic thermoelastic solid

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University) ;
  • Kaur, Harpreet (Department of Basic and Applied Sciences, Punjabi University)
  • Received : 2021.08.21
  • Accepted : 2021.10.09
  • Published : 2022.06.25

Abstract

The present paper deals with the axisymmetric deformation in homogeneousisotropic thermoelastic solid with two temperatures, with and without energy dissipation using modified couple stresstheory. The effect of energy dissipation and two temperature isstudied due to the concentrated normalforce, normalforce overthe circularregion, thermal pointsource and thermalsource over the circular region. The Laplace and Hankel transform techniques have been used to find the solution to the problem. The displacement components, conductive temperature distribution, stress components and couple stress are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. Effects of two temperature and energy dissipation on the conductive temperature,stress components and couple stress are depicted graphically.

Keywords

References

  1. Abbas, I.A. and Marin, M. (2018), "Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse", Iran. J. Sci. Technol., Trans. Mech. Eng., 42(1), 57-71. https://doi.org/10.1007/s40997-017-0077-1.
  2. Abbas, I.A., Abdalla, A.E.N.N., Alzahrani, F.S. and Spagnuolo, M. (2016), "Wave propagation in a generalized thermoelastic plate using eigenvalue approach", J. Therm. Stress., 39(11), 1329-1334. https://doi.org/10.1080/01495739.2016.1218229.
  3. Abbas, I.A., El-Amin, M.F. and Salama, A. (2008), "Effect of thermal dispersion on free convection in a fluid saturated porous medium", Int. J. Heat Fluid Flow, 30(2), 229-236. https://doi.org/10.1016/j.ijheatfluidflow.2009.01.004.
  4. Abd-Alla, A.E.N.N. and Abbas, I.A. (2011), "A problem of generalized magnetothermoelasticity for an infinitely long, perfectly conducting cylinder", J. Therm. Stress., 25(11), 1009-1025. https://doi.org/10.1080/01495730290074612.
  5. Ansari, R., Ashrafi, M.A. and Hosseinzadeh, S. (2014), "Vibration characteristics of Piezoelectric microbeams based on modified couple stress theory", Shock Vib., 2014, 1-12. https://doi.org/10.1155/2014/598292.
  6. Bhatti, M.M. and Michaelides, E.E. (2021), "Study of Arrhenius activation energy on the thermobioconvection nanofluid flow over a Riga plate", J. Therm. Anal. Calorim., 143, 2029-2038. https://doi.org/10.1007/s10973-020-09492-3.
  7. Borjalilou, V., Asghari, M. and Bagheri, E. (2019), "Small-scale thermoelastic damping in micro-beams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model", J. Therm. Stress., 42(7), 801-814. https://doi.org/10.1080/01495739.2019.1590168.
  8. Borjalilou. V. and Asghari, M. (2018), "Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model", Acta Mechanica, 229, 3869-3884. https://doi.org/10.1007/s00707-018-2197-0.
  9. Chen, W. and Li, X. (2013), "Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory", Arch. Appl. Mech., 83(3), 431-444. https://doi.org/10.1007/s00419-012-0689-2.
  10. Cosserat, E. and Cosserat, F. (1909), Theory of Deformable Bodies, Hermann et Fils, Paris, France.
  11. Eringen, A.C. (1999), Theory of Micropolar Elasticity, Microcontinuum Field Theories, Springer, New York, NY.
  12. Ghiasi, E.K. (2016), "Application of modified couple stress theory to study dynamic characteristics of electrostatically actuated micro-beams resting upon squeeze-film damping under mechanical shock", Int. J. Adv. Mech. Eng., 6(1), 1-15.
  13. Hobiny, A. and Abbas, I.A. (2017), "A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity", Mech. Time-Depend. Mater., 21(1), 61-72. https://doi.org/10.1007/s11043-016-9318-8.
  14. Hobiny, A. and Abbas, I.A. (2018), "Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material", Result. Phys., 10(1), 385-390. https://doi.org/10.1016/j.rinp.2018.06.035.
  15. Hobiny, A. and Abbas, I.A. (2021), "Analytic solutions of Fractional bioheat model in a spherical tissue", Mech. Bas. Des. Struct. Mach., 49(3), 430-439. https://doi.org/10.1080/15397734.2019.1702055.
  16. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of the Laplace transforms", J. Comput. Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
  17. Jung, W.Y., Han, S.C. and Park, W.T. (2014), "A modified couple stress theory for coupling analysis of SFGM nanoplates embedded in Pasternak elastic medium", Compos. Part B: Eng., 60, 746-756. https://doi.org/10.1016/j.compositesb.2013.12.058.
  18. Kakhki, E.K., Hosseini, S.M. and Tahani, M. (2016), "An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory", Appl. Math. Model., 40(4), 3164-3174. https://doi.org/10.1016/j.apm.2015.10.019.
  19. Kaur, I. and Lata. P. (2020), "Axisymmetric deformation in transversely isotropic magneto-thermoelastic solid with Green-Naghdi III due to inclined load", Int. J. Mech. Mater. Eng., 15(1), 3. https://doi.org/10.1186/s40712-019-0111-8.
  20. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Proceedings Series B, Koninklijke Nederlandse Akademie van Wetenschappen, 67, 17-29.
  21. Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002.
  22. Kumar, R., Devi, S. and Sharma, V. (2017), "Effect of Hall current and rotation in modified couple stress generalized thermoelastic half space due to ramp type heating", J. Solid Mech., 9(3), 527-542.
  23. Ma, H.M. Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.
  24. Marin, M. (1998), "A temporally evolutionary equation in elasticity of micropolar bodies with void", UPB Scientif. Bull., Ser. A: Appl. Math. Phys., 60 (3-4), 3-12, 1998.
  25. Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419.
  26. Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Modeling a microstretch thermo-elastic body with two temperatures", Abstr. Appl. Anal., 2013, 1-7. https://doi.org/10.1155/2013/583464.
  27. Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Rat. Mech. Anal., 16, 51-78. https://doi.org/10.1007/BF00248490
  28. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stress in linear elasticity", Arch. Rat. Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946.
  29. Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlin. Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
  30. Mohammad-Abadi, M. and Daneshmehr, A.R. (2015), "Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories", Int. J. Eng. Sci., 87, 83-102. https://doi.org/10.1016/j.ijengsci.2014.11.003.
  31. Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015
  32. Press, W.H., Teukolsky, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipe, Cambridge University Press.
  33. Razavilar, R., Alashti, R.A. and Fathi, A. (2016), "Investigation of thermoelastic damping in rectangular microplate resonator using modified couple stress theory", Int. J. Mech. Mater. Des., 12(1), 39-51. https://doi.org/10.1007/s10999-014-9286-6.
  34. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solid., 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  35. Rezazadeh, G., Vahdat, A.S., Tayefeh-rezaei, S. and Cetinkaya, C. (2012), "Thermoelastic damping in a micro-beam resonator using modified couple stress theory", Acta Mechanica, 223(6), 1137-1152. https://doi.org/10.1007/s00707-012-0622-3.
  36. Simsek, M., Aydin, M., Yurtcu, H. and Reddy, J. (2015), "Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory", Acta Mechanica, 226(11), 3807-3822. https://doi.org/10.1007/s00707-015-1437-9.
  37. Taati, E., Najafabadi, M.M. and Tabrizi, H.B. (2014), "Size-dependent generalized thermoelasticity model for Timoshenko micro-beams", Acta Mechanica, 225(7), 1823-1842. https://doi.org/10.1007/s00707-013-1027-7.
  38. Tahani, M., Askari, A.R., Mohandes, Y. and Hassani, B. (2015), "Size-dependent free vibration analysis of electrostatically pre-deformed rectangular micro-plates based on the modified couple stress theory", Int. J. Mech. Sci., 94, 185-198. https://doi.org/10.1016/j.ijmecsci.2015.03.004.
  39. Tsiatas, G.C. and Yiotis, A.J. (2015), "Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory", Acta Mechanica, 226(4), 1267-1281. https://doi.org/10.1007/s00707-014-1249-3.
  40. Voigt, W. (1887), Theoretische Studien uber die Elasticit atsverh altnisse der Krystalle"(Theoretical studies on the elasticity relationships of crystals), Abhandlungen der koniglichen Gesellschaft der Wissenschaften in Gottingen, Dieterichsche Verlags-Buchhandlung.
  41. Wang, Y.G., Lin, W.H. and Liu, N. (2013), "Nonlinear free vibration of a microscale beam based on modified couple stress theory", Physica E: Low-Dimens. Syst. Nanostruct., 47, 80-85. https://doi.org/10.1016/j.physe.2012.10.020.
  42. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  43. Youssef, H.M. (2006), "Theory of two temperature generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101.
  44. Zhang, L., Bhatti, M.M. and Michaelides, E.E. (2021), "Electro-magnetohydrodynamic flow and heat transfer of a third-grade fluid using a Darcy-Brinkman-Forchheimer model", Int. J. Numer. Meth. Heat Fluid Flow, 31(8), 2623-2639. https://doi.org/10.1108/HFF-09-2020-0566.
  45. Zhang, L., Bhatti, M.M., Marin, M. and Mekheimer, K.S. (2020), "Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles", Entropy, 22(10), 1070. https://doi.org/10.3390/e22101070.
  46. Zhang, L., Bhatti, M.M., Shahid, Ellahi, R., Beg, O.A. and Sadiq, S.M. (2021), "Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface: a robust spectral approach", J. Taiwan Inst. Chem. Eng., 124 98-105. https://doi.org/10.1016/j.jtice.2021.04.065.
  47. Zhong, Z.Y., Zhang, W.M., Meng, G. and Wang, M.Y. (2015), "Thermoelastic damping in the size-dependent microplate resonators based on modified couple stress theory", J. Microelectromech. Syst., 24(2), 431-445. https://doi.org/10.1109/JMEMS.2014.2332757.
  48. Zhou, S.S. and Gao, X.L. (2014), "A nonclassical model for circular Mindlin plates based on modified couple stress theory", J. Appl. Mech., 81(5), 217-235. https://doi.org/10.1115/1.4026274.