References
- ACI 318-14 (American Concrete Institute) (2014), Building Code Requirements for Structural Concrete and Commentary, Committee 318.
- Al-Abbas, K.A., Saadoon, S. and Al-Robay, A.A. (2020), "Experimental study for elastic deformation under isolated footing", Period. Eng. Nat. Sci., 8(2), 942-948. https://doi.org/10.21533/PEN.V8I2.1353.G577.
- Anil, O., Akbas, S.O., Babaglray, S., Gel, A.C. and Durucan, C. (2017), "Experimental and finite element analyses of footings of varying shapes on sand", Geomech. Eng., 12(2), 223-238. http://doi.org/10.12989/gae.2017.12.2.223.
- Chen, W.R., Chen, C.S and Yu, S.Y. (2011), "Nonlinear vibration of hybrid composite plates on elastic foundations", Struct. Eng. Mech., 37(4), 367-383. http://doi.org/10.12989/sem.2011.37.4.367.
- Dagdeviren, U. (2016), "Shear stresses below the rectangular foundations subjected to biaxial bending", Geomech. Eng., 10(2), 189-205. http://doi.org/10.12989/gae.2016.10.2.189.
- Gandomi, A.H. and Kashani, A.R. (2018), "Construction cost minimization of shallow foundation using recent swarm intelligence techniques", IEEE Trans. Indus. Inform., 14(3), 1009-1106. https://doi.org/10.1109/TII.2017.2776132.
- Guler, K. and Celep, Z. (2005), "Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic loads", Struct. Eng. Mech., 21(6), 699-712. https://doi.org/10.12989/sem.2005.21.6.699.
- Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure", Couple. Syst. Mech., 7(6), 649-668. https://doi.org/10.12989/csm.2018.7.6.649.
- Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium", Couple. Syst. Mech., 9(2), 125-145. https://doi.org/10.12989/csm.2020.9.2.125.
- Hassaan, G.A. (2014), "Optimal design of machinery shallow foundations with sand soils", Int. J. Res. Eng. Technol., 3(5), 1-8. https://doi.org/10.15623/ijret.2014.0305001
- Ibrahimbegovic, A. and Mejia-Nava, R.A. (2021), "Heterogeneities and material-scales providing physicallybased damping to replace Rayleigh damping for any structure size", Couple. Syst. Mech., 10(3), 201-216. https://doi.org/10.12989/csm.2021.10.3.201.
- Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2012), "Optimization of shallow foundation using gravitational search algorithm", Res. J. Appl. Sci. Eng. Technol., 4(9). 1124-1130.
- Khatri, V.N., Debbarma, S.P., Dutta, R.K. and Mohanty, B. (2017), "Pressure-settlement behavior of square and rectangular skirted footings resting on sand", Geomech. Eng., 12(4), 689-705. https://doi.org/10.12989/gae.2017.12.4.689.
- Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017), "Optimal dimensioning for the corner combined footings", Adv. Comput. Des., 2(2), 169-183. https://doi.org/10.12989/acd.2017.2.2.169.
- Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- Luevanos-Rojas, A. (2014), "Design of boundary combined footings of rectangular shape using a new model", Dyn., 81(180), 199-208. https://doi.org/10.15446/dyna.v81n188.41800.
- Luevanos-Rojas, A. (2015a), "A New Mathematical Model for Dimensioning of the Boundary Trapezoidal Combined Footings", Int. J. Innov. Comput. I., 11(4), 1269-1279.
- Luevanos-Rojas, A. (2015b), "Design of boundary combined footings of trapezoidal form using a new model", Struct. Eng. Mech., 56(5), 745-765. http://doi.org/10.12989/sem.2015.56.5.745.
- Luevanos-Rojas, A. (2016), "A comparative study for the design of rectangular and circular isolated footings using new models", Dyn., 83(196), 149-158. https://doi.org/10.15446/dyna.v83n196.51056.
- Luevanos-Rojas, A., Barquero-Cabrero, J.D., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017b), "A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models", Couple. Syst. Mech., 6(4), 417-437. https://doi.org/10.12989/csm.2017.6.4.417.
- Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017a), "Optimal design for rectangular isolated footings using the real soil pressure", Ing. Invest., 37(2), 25-33. https://doi.org/10.15446/ing.investig.v37n2.61447.
- Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018a), "A new model for T-shaped combined footings Part I: Optimal dimensioning", Geomech. Eng., 14(1), 51-60. https://doi.org/10.12989/gae.2018.14.1.051.
- Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018b), "A new model for T-shaped combined footings Part II: Mathematical model for design", Geomech. Eng., 14(1), 61-69. https://doi.org/10.12989/gae.2018.14.1.061.
- Maheshwari, P. (2017), "Analysis of combined footings on extensible geosynthetic-stone column improved ground", J. Civil Eng., Sci. Technol., 8(2), 57-71. https://doi.org/10.33736/JCEST.439.2017.
- Maheshwari, P. and Khatri, S. (2012), "Influence of inclusion of geosynthetic layer on response of combined footings on stone column reinforced earth beds", Geomech. Eng., 4(4), 263-279. https://doi.org/10.12989/gae.2012.4.4.263.
- Mejia-Nava, R.A., Ibrahimbegovic, A., Dominguez-Ramirez, N. and Flores-Mendez, E. (2021), "Viscoelastic behavior of concrete structures subject to earthquake", Couple. Syst. Mech., 10(3), 263-280. https://doi.org/10.12989/csm.2021.10.3.263.
- Mohamed, F.M.O., Vanapalli, S.K. and Saatcioglu, M. (2013), "Generalized Schmertmann Equation for settlement estimation of shallow footings in saturated and unsaturated sands", Geomech. Eng., 5(4), 363-377. https://doi.org/10.12989/gae.2013.5.4.343.
- Mohebkhah, A. (2017), "Bearing capacity of strip footings on a stone masonry trench in clay", Geomech. Eng., 13(2), 255-267. https://doi.org/10.12989/gae.2017.13.2.255.
- Orbanich, C.J. and Ortega, N.F. (2013), "Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method", Struct. Eng. Mech., 45(2), 169-182. https://doi.org/10.12989/sem.2013.45.2.169.
- Orbanich, C.J., Dominguez, P.N. and Ortega, N.F. (2012), "Strenghtening and repair of concrete foundation beams whit fiber composite materials", Mater. Struct., 45, 1693-1704. http://dx.doi.org/10.1617/s11527-012-9866-6.
- Rad, A.B. (2012), "Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads", Struct. Eng. Mech., 44(2), 139-161. https://doi.org/10.12989/sem.2012.44.2.139.
- Rawat, S. and Mittal, R.K. (2018), "Optimization of eccentrically loaded reinforced-concrete isolated footings", Pract. Period. Struct. Des. Constr., 23(2). 06018002. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000366.
- Rezaei, H., Nazir, R. and Momeni, E. (2016), "Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study", J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.), 7(4), 273-285. https://doi.org/10.1631/jzus.A1500033
- Sahoo, J.P. and Kumar, J. (2015), "Ultimate bearing capacity of shallow strip and circular foundations by using limit analysis, finite elements, and optimization", Int. J. Geotech. Eng., 9(1), 30-41. https://doi.org/10.1179/1939787914Y.0000000070.
- Shahin M.A. and Cheung E.M. (2011), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., 3(2), 153-167. http://doi.org/10.12989/gae.2011.3.2.153.
- Smith-Pardo, J.P. (2011), "Performance-based framework for soil-structure systems using simplified rocking foundation models", Struct. Eng. Mech., 40(6), 763-782. http://doi.org/10.12989/sem.2011.40.6.763.
- Turedi, Y., Emirler, B., Ornek, M. and Yildiz, A. (2019), "Determination of the bearing capacity of model ring footings: Experimental and numerical investigations", Geomech. Eng., 18(1), 29-39. http://doi.org/10.12989/gae.2019.18.1.029.
- Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. http://doi.org/10.12989/gae.2015.9.3.287.
- Wang, Y. and Kulhawy, F.H. (2008), "Economic design optimization of foundations", J. Geotech. Geoenviron. Eng., 134(8), 1097-1105. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1097).
- Zhang, W.X. Wu, H., Hwang, H.J., Zhang, J.Y., Chen, B. and Yi, W.J. (2019), "Bearing behavior of reinforced concrete column-isolated footing substructures", Eng. Struct., 200, 109744. https://doi.org/10.1016/j.engstruct.2019.109744.