DOI QR코드

DOI QR Code

A comparative study between trapezoidal combined footings and T-shaped combined footings

  • Received : 2021.08.12
  • Accepted : 2022.01.06
  • Published : 2022.06.25

Abstract

This work presents a comparative study between two different models: trapezoidal and T-shaped combined footings. The comparative study between trapezoidal and T-shaped combined footings presented in this paper generatesresultsthat have an unparalleled accuracy for all foundation engineering problems. The main part of this research is to obtain the optimal area, reinforcing steel, and thickness of the trapezoidal and T-shaped combined footings using the new models. The comparison is made for two trapezoidal combined footings and two T-shaped combined footings ofreinforced concrete subjected to the same load.Themain findings are: themodelfortrapezoidal combined footings can be used for rectangular and triangular, and the T-shaped combined footings can be used for rectangular. The structure of the paper is asfollowsfirst a very complete state of the art with extensive referencesthat describesthe methodology used for the different models clearly, presents different numerical examples, results and at the end conclusions.

Keywords

References

  1. ACI 318-14 (American Concrete Institute) (2014), Building Code Requirements for Structural Concrete and Commentary, Committee 318.
  2. Al-Abbas, K.A., Saadoon, S. and Al-Robay, A.A. (2020), "Experimental study for elastic deformation under isolated footing", Period. Eng. Nat. Sci., 8(2), 942-948. https://doi.org/10.21533/PEN.V8I2.1353.G577.
  3. Anil, O., Akbas, S.O., Babaglray, S., Gel, A.C. and Durucan, C. (2017), "Experimental and finite element analyses of footings of varying shapes on sand", Geomech. Eng., 12(2), 223-238. http://doi.org/10.12989/gae.2017.12.2.223.
  4. Chen, W.R., Chen, C.S and Yu, S.Y. (2011), "Nonlinear vibration of hybrid composite plates on elastic foundations", Struct. Eng. Mech., 37(4), 367-383. http://doi.org/10.12989/sem.2011.37.4.367.
  5. Dagdeviren, U. (2016), "Shear stresses below the rectangular foundations subjected to biaxial bending", Geomech. Eng., 10(2), 189-205. http://doi.org/10.12989/gae.2016.10.2.189.
  6. Gandomi, A.H. and Kashani, A.R. (2018), "Construction cost minimization of shallow foundation using recent swarm intelligence techniques", IEEE Trans. Indus. Inform., 14(3), 1009-1106. https://doi.org/10.1109/TII.2017.2776132.
  7. Guler, K. and Celep, Z. (2005), "Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic loads", Struct. Eng. Mech., 21(6), 699-712. https://doi.org/10.12989/sem.2005.21.6.699.
  8. Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2018), "Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure", Couple. Syst. Mech., 7(6), 649-668. https://doi.org/10.12989/csm.2018.7.6.649.
  9. Hadzalic, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium", Couple. Syst. Mech., 9(2), 125-145. https://doi.org/10.12989/csm.2020.9.2.125.
  10. Hassaan, G.A. (2014), "Optimal design of machinery shallow foundations with sand soils", Int. J. Res. Eng. Technol., 3(5), 1-8. https://doi.org/10.15623/ijret.2014.0305001
  11. Ibrahimbegovic, A. and Mejia-Nava, R.A. (2021), "Heterogeneities and material-scales providing physicallybased damping to replace Rayleigh damping for any structure size", Couple. Syst. Mech., 10(3), 201-216. https://doi.org/10.12989/csm.2021.10.3.201.
  12. Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2012), "Optimization of shallow foundation using gravitational search algorithm", Res. J. Appl. Sci. Eng. Technol., 4(9). 1124-1130.
  13. Khatri, V.N., Debbarma, S.P., Dutta, R.K. and Mohanty, B. (2017), "Pressure-settlement behavior of square and rectangular skirted footings resting on sand", Geomech. Eng., 12(4), 689-705. https://doi.org/10.12989/gae.2017.12.4.689.
  14. Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017), "Optimal dimensioning for the corner combined footings", Adv. Comput. Des., 2(2), 169-183. https://doi.org/10.12989/acd.2017.2.2.169.
  15. Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
  16. Luevanos-Rojas, A. (2014), "Design of boundary combined footings of rectangular shape using a new model", Dyn., 81(180), 199-208. https://doi.org/10.15446/dyna.v81n188.41800.
  17. Luevanos-Rojas, A. (2015a), "A New Mathematical Model for Dimensioning of the Boundary Trapezoidal Combined Footings", Int. J. Innov. Comput. I., 11(4), 1269-1279.
  18. Luevanos-Rojas, A. (2015b), "Design of boundary combined footings of trapezoidal form using a new model", Struct. Eng. Mech., 56(5), 745-765. http://doi.org/10.12989/sem.2015.56.5.745.
  19. Luevanos-Rojas, A. (2016), "A comparative study for the design of rectangular and circular isolated footings using new models", Dyn., 83(196), 149-158. https://doi.org/10.15446/dyna.v83n196.51056.
  20. Luevanos-Rojas, A., Barquero-Cabrero, J.D., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017b), "A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models", Couple. Syst. Mech., 6(4), 417-437. https://doi.org/10.12989/csm.2017.6.4.417.
  21. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017a), "Optimal design for rectangular isolated footings using the real soil pressure", Ing. Invest., 37(2), 25-33. https://doi.org/10.15446/ing.investig.v37n2.61447.
  22. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018a), "A new model for T-shaped combined footings Part I: Optimal dimensioning", Geomech. Eng., 14(1), 51-60. https://doi.org/10.12989/gae.2018.14.1.051.
  23. Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018b), "A new model for T-shaped combined footings Part II: Mathematical model for design", Geomech. Eng., 14(1), 61-69. https://doi.org/10.12989/gae.2018.14.1.061.
  24. Maheshwari, P. (2017), "Analysis of combined footings on extensible geosynthetic-stone column improved ground", J. Civil Eng., Sci. Technol., 8(2), 57-71. https://doi.org/10.33736/JCEST.439.2017.
  25. Maheshwari, P. and Khatri, S. (2012), "Influence of inclusion of geosynthetic layer on response of combined footings on stone column reinforced earth beds", Geomech. Eng., 4(4), 263-279. https://doi.org/10.12989/gae.2012.4.4.263.
  26. Mejia-Nava, R.A., Ibrahimbegovic, A., Dominguez-Ramirez, N. and Flores-Mendez, E. (2021), "Viscoelastic behavior of concrete structures subject to earthquake", Couple. Syst. Mech., 10(3), 263-280. https://doi.org/10.12989/csm.2021.10.3.263.
  27. Mohamed, F.M.O., Vanapalli, S.K. and Saatcioglu, M. (2013), "Generalized Schmertmann Equation for settlement estimation of shallow footings in saturated and unsaturated sands", Geomech. Eng., 5(4), 363-377. https://doi.org/10.12989/gae.2013.5.4.343.
  28. Mohebkhah, A. (2017), "Bearing capacity of strip footings on a stone masonry trench in clay", Geomech. Eng., 13(2), 255-267. https://doi.org/10.12989/gae.2017.13.2.255.
  29. Orbanich, C.J. and Ortega, N.F. (2013), "Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method", Struct. Eng. Mech., 45(2), 169-182. https://doi.org/10.12989/sem.2013.45.2.169.
  30. Orbanich, C.J., Dominguez, P.N. and Ortega, N.F. (2012), "Strenghtening and repair of concrete foundation beams whit fiber composite materials", Mater. Struct., 45, 1693-1704. http://dx.doi.org/10.1617/s11527-012-9866-6.
  31. Rad, A.B. (2012), "Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads", Struct. Eng. Mech., 44(2), 139-161. https://doi.org/10.12989/sem.2012.44.2.139.
  32. Rawat, S. and Mittal, R.K. (2018), "Optimization of eccentrically loaded reinforced-concrete isolated footings", Pract. Period. Struct. Des. Constr., 23(2). 06018002. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000366.
  33. Rezaei, H., Nazir, R. and Momeni, E. (2016), "Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study", J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.), 7(4), 273-285. https://doi.org/10.1631/jzus.A1500033
  34. Sahoo, J.P. and Kumar, J. (2015), "Ultimate bearing capacity of shallow strip and circular foundations by using limit analysis, finite elements, and optimization", Int. J. Geotech. Eng., 9(1), 30-41. https://doi.org/10.1179/1939787914Y.0000000070.
  35. Shahin M.A. and Cheung E.M. (2011), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., 3(2), 153-167. http://doi.org/10.12989/gae.2011.3.2.153.
  36. Smith-Pardo, J.P. (2011), "Performance-based framework for soil-structure systems using simplified rocking foundation models", Struct. Eng. Mech., 40(6), 763-782. http://doi.org/10.12989/sem.2011.40.6.763.
  37. Turedi, Y., Emirler, B., Ornek, M. and Yildiz, A. (2019), "Determination of the bearing capacity of model ring footings: Experimental and numerical investigations", Geomech. Eng., 18(1), 29-39. http://doi.org/10.12989/gae.2019.18.1.029.
  38. Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. http://doi.org/10.12989/gae.2015.9.3.287.
  39. Wang, Y. and Kulhawy, F.H. (2008), "Economic design optimization of foundations", J. Geotech. Geoenviron. Eng., 134(8), 1097-1105. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:8(1097).
  40. Zhang, W.X. Wu, H., Hwang, H.J., Zhang, J.Y., Chen, B. and Yi, W.J. (2019), "Bearing behavior of reinforced concrete column-isolated footing substructures", Eng. Struct., 200, 109744. https://doi.org/10.1016/j.engstruct.2019.109744.