DOI QR코드

DOI QR Code

혈류제한이 뇌성마비 아동의 큰볼기근 두께와 밀도 및 백색영역지수에 미치는 영향

Effects of blood flow restriction on gluteus muscles thickness, density, and WAI for children with cerebral palsy

  • 박재철 (전남과학대학교 물리치료과) ;
  • 이동규 (전남과학대학교 물리치료과)
  • Park, Jae Cheol (Department of Physical Therapy, Chunnam Techno University) ;
  • Lee, Dong Kyu (Department of Physical Therapy, Chunnam Techno University)
  • 투고 : 2021.11.08
  • 심사 : 2022.01.03
  • 발행 : 2022.06.30

초록

Background: This study was to identify the effects of blood flow restriction on gluteus muscles thickness, density, and white area index for children with cerebral palsy. Design: Randomized controlled trial. Methods: Twenty children with cerebral palsy were assigned randomly to an experimental (n=10) or control (n=10) group. The experimental group performed a bicycle exercise after blood flow restriction. The control group performed a bicycle exercise. The study used an ultrasonic instrument to measure gluteus muscles thickness, density, and WAI. Wilcoxon signed ranks test was used for determination of differences before and after treatment, and a Mannn-whitney U test was used for determination of differences between treatment groups. Results: As a result of comparison within groups, the experimental and control group showed significant difference for gluteus muscles thickness, density, and WAI after the experiment (p<0.05). In comparison between two groups, the experimental group showed more significant difference in gluteus muscles thickness, density, and WAI than the control group (p<0.05). Conclusion: Based on these results, a bicycle exercise after blood flow restriction effectively improved the gluteus muscles thickness, density, and WAI of children with cerebral palsy.

키워드

참고문헌

  1. 김효원과 안소윤. 뇌성마비 아동의 대동작 수행평가(GMPM)와 아동용 균형척도(PBS) 사이의 상관성 연구 대한물리치료과학회지 2015;22(2);1-10.
  2. 양경옥, 오명화, 김정자. 경직형 양지마비아의 기립시 하지근 활성화와 하지 관절각에 관한 연구. 한국재활심리학회 2009;16(3):1-20.
  3. 이완희. 재활 영상해부학. 서울. 대한나래출판사; 2018.
  4. 이연섭과 남택길. 청소년기 경직형 뇌성마비아동의 체간강화 운동이 척추분절 및 보행에 미치는 영향. 대한물리치료과학회지 2012;19(1):1-7.
  5. 윤세원, 황태연, 김용남, 등. 제 2형 당뇨환자의 말초신경기능 및 골격근의 Echogenicity 분석. 대한임상전기생리학회 2006;4(1):13-25.
  6. 정진규, 김용남, 황태연, 등. 정상 골격근의 근전도 중앙주파수 및 초음파 영상 밀도 분석. 대한물리치료학회 2006;18(1):83-94.
  7. 한종만, 박재철, 김금숙, 등. 불안정 지지면에서의 동적 안정화 운동이 허리근육의 두께 및 밀도에 미치는 효과. 한국산학기술학회 2015;16(3):1957-63. https://doi.org/10.5762/KAIS.2015.16.3.1957
  8. Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 2006;100(5):1460-6. https://doi.org/10.1152/japplphysiol.01267.2005
  9. Apolo-Arenas MD, Jeronimo AFdA, Cana-Pino A, et al. Standardized outcomes measures in physical therapy practice for treatment and rehabilitation of cerebral PALSY: a systematic review. J Pers Med 2021;11(7):604. https://doi.org/10.3390/jpm11070604
  10. Cahill-Rowley K, Rose J. Etiology of impaired selective motor control: emerging evidence and its implications for research and treatment in cerebral palsy. Dev Med Child Neurol 2014;56(6):522-8. https://doi.org/10.1111/dmcn.12355
  11. Centner C, Wiegel P, Gollhofer A, et al. Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis. Sports Med 2019;49(1):95-108. https://doi.org/10.1007/s40279-018-0994-1
  12. Cook SB, Clark BC, Ploutz-Snyder LL. Effects of exercise load and blood-flow restriction on skeletal muscle function. Medicine and science in sports and exercise. Med Sci Sports Exerc 2007;39(10):1708-13. https://doi.org/10.1249/mss.0b013e31812383d6
  13. Gage JR. Gait analysis. An essential tool in the treatment of cerebral palsy. Clin Orthop Relat Res 1993;288:126-34.
  14. Garvey MA, Giannetti ML, Alter KE, et al. Cerebral palsy: new approaches to therapy. Curr Neurol Neurosci Rep 2007;7(2):147-55. https://doi.org/10.1007/s11910-007-0010-x
  15. Houlihan CM. Walking function, pain, and fatigue in adults with cerebral palsy. Dev Med Child Neurol 2009;51(5):338-9. https://doi.org/10.1111/j.1469-8749.2008.03253.x
  16. Janssen WG, Bussmann HB, Stam HJ. Determinants of the sit-to-stand movement: a review. Phys Ther 2002;82(9):866-79. https://doi.org/10.1093/ptj/82.9.866
  17. Jessee MB, Dankel SJ, Buckner SL, et al. The cardiovascular and perceptual response to very low load blood flow restricted exercise. Int J Sports Med 2017;38(08):597-603. https://doi.org/10.1055/s-0043-109555
  18. Kubota A, Sakuraba K, Koh S, et al. Blood flow restriction by low compressive force prevents disuse muscular weakness. J Sci Med Sport 2011;14(2):95-9. https://doi.org/10.1016/j.jsams.2010.08.007
  19. Larkin KA, MacNeil RG, Dirain M, et al. Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Medicine and science in sports and exercise. Med Sci Sports Exerc 2012;44(11):2077-83. https://doi.org/10.1249/MSS.0b013e3182625928
  20. Linero C, Choi SJ. Effect of blood flow restriction during low-intensity resistance training on bone markers and physical functions in postmenopausal women. J Exerc Sci Fit 2021;19(1):57-65. https://doi.org/10.1016/j.jesf.2020.09.001
  21. Maurits NM, Bollen AE, Windhausen A, et al. Muscle ultrasound analysis: normal values and differentiation between myopathies and neuropathies. Ultrasound Med Bio 2003;29(2):215-25. https://doi.org/10.1016/S0301-5629(02)00758-5
  22. Nielsen JL, Aagaard P, Bech RD, et al. Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol 2012;590(17):4351-61. https://doi.org/10.1113/jphysiol.2012.237008
  23. Nielsen PK, Jensen BR, Darvann T, et al. Quantitative ultrasound tissue characterization in shoulder and thigh muscles-a new approach. BMC Musculoskelet Disord 2006;7(1):2. https://doi.org/10.1186/1471-2474-7-2
  24. Ogawa H, Nakajima T, Shibasaki I, et al. Low-Intensity Resistance training with moderate blood flow restriction appears safe and increases skeletal muscle strength and size in cardiovascular surgery patients: a pilot study. J Clin Med 2021;10(3):547. https://doi.org/10.3390/jcm10030547
  25. Pakula AT, Braun KVN, Yeargin-Allsopp M. Cerebral palsy: classification and epidemiology. Phys Med Rehabil Clin N Am 2009;20(3):425-52. https://doi.org/10.1016/j.pmr.2009.06.001
  26. Park JC, Kim YN. Impact of Waist Stabilization Exercise with Blood Flow Restriction on White Area Index of Trunk Muscle Thickness Density. J Kor Phys Ther 2016;28(2):136-41. https://doi.org/10.18857/jkpt.2016.28.2.136
  27. Patterson SD, Hughes L, Warmington S, et al. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol 2019;15(10):533.
  28. Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med 2015;45(2):187-200. https://doi.org/10.1007/s40279-014-0264-9
  29. Pereira-Neto EA, Lewthwaite H, Boyle T, et al. Effects of exercise training with blood flow restriction on vascular function in adults: a systematic review and meta-analysis. PeerJ 2021;7(9):e11554. https://doi.org/10.7717/peerj.11554
  30. Pitsillides A, Stasinopoulos D, Mamais I. Blood flow restriction training in patients with knee osteoarthritis: systematic review of randomized controlled trials. J Bodyw Mov Ther 2021;27(7):477-86. https://doi.org/10.1016/j.jbmt.2021.04.015
  31. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy april. Dev Med Child Neurol Suppl 2006;109(109):8-14.
  32. Slysz JT, Boston M, King R, et al. Blood flow restriction combined with electrical stimulation attenuates thigh muscle disuse atrophy. Med Sci Sports Exerc 2021;53(5):1033-40. https://doi.org/10.1249/MSS.0000000000002544
  33. Slysz J, Stultz J, Burr JF. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis. J Sci Med Sport 2016;19(8):669-75. https://doi.org/10.1016/j.jsams.2015.09.005
  34. Takano H, Morita T, Iida H, et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 2005;95(1):65-73. https://doi.org/10.1007/s00421-005-1389-1
  35. Takarada Y, Nakamura Y, Aruga S, et al. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 2000;88(1):61-5. https://doi.org/10.1152/jappl.2000.88.1.61
  36. Takarada Y, Tsuruta T, Ishii N. Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol 2004;54(6):585-92. https://doi.org/10.2170/jjphysiol.54.585
  37. Wilk M, Krzysztofik M, Filip A, et al. The acute effects of external compression with blood flow restriction on maximal strength and strength-endurance performance of the upper limbs. Front Physiol 2020;10(11):567.
  38. Yakar S, Rosen CJ, Beamer WG, et al. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 2002;110(6):771-81. https://doi.org/10.1172/JCI15463
  39. Yasuda T, Fukumura K, Fukuda T, et al. Muscle size and arterial stiffness after blood flow-restricted low-intensity resistance training in older adults. Scand J Med Sci Sports 2014;24(5):799-806. https://doi.org/10.1111/sms.12087
  40. You JM, Park HC, Yoon SJ. The effects of different resting intervals in strength training with vascular occlusion on hormonal response and muscular strength. KJPE 2008;47(6):645-58.