DOI QR코드

DOI QR Code

Properties of translucent zirconia and lithium disilicate glass-ceramics: a literature review

반투명 지르코니아와 리튬디실리케이트 결정화유리의 물성에 관한 문헌고찰

  • Cha, Min-Sang (Department of Dentistry, Gangneung Asan Hospital, University of Ulsan College of Medicine) ;
  • Kim, Ye-Jin (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Ko, Kyung-Ho (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Chan-Jin (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Cho, Lee-Ra (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Huh, Yoon-Hyuk (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University)
  • 차민상 (울산대학교 의과대학 강릉아산병원 치과) ;
  • 김예진 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 고경호 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 박찬진 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 조리라 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 허윤혁 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소)
  • Received : 2022.06.07
  • Accepted : 2022.06.10
  • Published : 2022.06.30

Abstract

Although low translucency 3 mol% yttria stabilized tetragonal zirconia polycrystal has excellent mechanical properties, it has limited application as a monolithic prosthesis. To improve these optical limitations, translucent zirconia has improved esthetics due to an increase in the cubic phase; however, it is accompanied by a decrease in mechanical properties simultaneously. Lithium disilicate has improved its mechanical properties through crystal size reduction and various heat treatment methods; therefore, its clinical application range is continuously increasing. Translucent zirconia shows a wide distribution of physical properties depending on the yttria content and lithium disilicate according to the size and density of crystal grains. As a result, the indications for translucent zirconia and lithium disilicate are increasing. Therefore, in this literature review, we intend to examine the rationale behind the material selection criteria in clinical situations and considerations for designing fixed dental prostheses including pontic, in particular, by summarizing recent studies.

다양한 치과용 도재가 개발되고 있으나 현재 단일구조 보철물로 사용할 수 있는 수준의 기계적, 광학적 성질을 보이는 도재는 반투명 지르코니아와 리튬디실리케이트 결정화유리가 대표적이다. 기계적 성질의 경우 지르코니아가, 광학적 성질은 리튬디실리케이트가 상대적으로 더 우수하다고 알려져 있으나 물성개선을 통해 보다 다양한 증례에 보철물을 적용할 수 있게 되었다. 그 결과 반투명 지르코니아와 리튬디실리케이트 보철물의 적응증이 서로 중복되는 경우가 발생하고 있다. 그러나 두 도재는 유리질(glass matrix) 포함여부뿐만 아니라 강화기전, 탄성계수 등이 서로다르다. 이에 본 문헌고찰에서는 두 단일구조 치과용 도재의 물성을 평가한 다양한 연구결과들을 살펴보고 특히 가공치가 포함된 고정성 보철물의 디자인 시 고려사항에 대해 알아보고자 한다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1G1A1007134).

References

  1. Ghodsi S, Jafarian Z. A review on translucent zirconia. Eur J Prosthodont Restor Dent 2018;26:62-74.
  2. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30:1195-203. https://doi.org/10.1016/j.dental.2014.08.375
  3. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Narhi TO, Lassila LV. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater 2015;31:1180-7. https://doi.org/10.1016/j.dental.2015.06.016
  4. Baldissara P, Wandscher VF, Marchionatti AME, Parisi C, Monaco C, Ciocca L. Translucency of IPS e.max and cubic zirconia monolithic crowns. J Prosthet Dent 2018;120:269-75. https://doi.org/10.1016/j.prosdent.2017.09.007
  5. Hallmann L, Ulmer P, Reusser E, Louvel M, Hammerle C. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. J Eur Ceram Soc 2012;32:4091-104. https://doi.org/10.1016/j.jeurceramsoc.2012.07.032
  6. Nakamura T, Nakano Y, Usami H, Wakabayashi K, Ohnishi H, Sekino T, Yatani H. Translucency and low-temperature degradation of silica-doped zirconia: A pilot study. Dent Mater J 2016;35:571-7. https://doi.org/10.4012/dmj.2015-274
  7. Zhang Y, Lawn BR. Novel zirconia materials in dentistry. J Dent Res 2018;97:140-7. https://doi.org/10.1177/0022034517737483
  8. Zhang F, Inokoshi M, Batuk M, Hadermann J, Naert I, Van Meerbeek B, Vleugels J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016;32:e327-37.
  9. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013;17:269-74. https://doi.org/10.1007/s00784-012-0692-6
  10. Bravo-Leon A, Morikawa Y, Kawahara M, Mayo MJ. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Materialia 2002;50:4555-62. https://doi.org/10.1016/S1359-6454(02)00283-5
  11. Wang J, Rainforth M, Stevens R. The grain size dependence of the mechanical properties in TZP ceramics. In: Meriani S, Palmonari C, editors. Zirconia'88: Advances in Zirconia Science and Technology. Dordrecht; Springer Netherlands; 1989. p. 337-66.
  12. Sulaiman TA. Materials in digital dentistry-A review. J Esthet Restor Dent 2020;32:171-81. https://doi.org/10.1111/jerd.12566
  13. Holman CD, Lien W, Gallardo FF, Vandewalle KS. Assessing flexural strength degradation of new cubic containing zirconia materials. J Contemp Dent Pract 2020;21:114-8. https://doi.org/10.5005/jp-journals-10024-2762
  14. McLaren EA, Lawson N, Choi J, Kang J, Trujillo C. New high-translucent cubic-phase-containing zirconia: Clinical and laboratory considerations and the effect of air abrasion on strength. Compend Contin Educ Dent 2017;38:e13-6.
  15. Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health 2019;19:134. https://doi.org/10.1186/s12903-019-0838-x
  16. Zhang F, Reveron H, Spies BC, Van Meerbeek B, Chevalier J. Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations. Acta Biomater 2019;91:24-34. https://doi.org/10.1016/j.actbio.2019.04.043
  17. Sulaiman TA, Abdulmajeed AA, Delgado A, Donovan TE. Fracture rate of 188695 lithium disilicate and zirconia ceramic restorations after up to 7.5 years of clinical service: A dental laboratory survey. J Prosthet Dent 2020;123:807-10. https://doi.org/10.1016/j.prosdent.2019.06.011
  18. Laksono H. The clinical potential and limits of the all-ceramic fixed partial denture restorations. Dental Journal 2007;40:186-92. https://doi.org/10.20473/j.djmkg.v40.i4.p186-192
  19. Mazza LC, Lemos CAA, Pesqueira AA, Pellizzer EP. Survival and complications of monolithic ceramic for tooth-supported fixed dental prostheses: A systematic review and meta-analysis. J Prosthet Dent 2021;S0022-3913(21)00065-2.
  20. Garling A, Sasse M, Becker MEE, Kern M. Fifteen-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Dent 2019;89:103178. https://doi.org/10.1016/j.jdent.2019.08.001
  21. Reich S, Endres L, Weber C, Wiedhahn K, Neumann P, Schneider O, Rafai N, Wolfart S. Threeunit CAD/CAM-generated lithium disilicate FDPs after a mean observation time of 46 months. Clin Oral Investig 2014;18:2171-8. https://doi.org/10.1007/s00784-014-1191-8
  22. Kern M, Sasse M, Wolfart S. Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic. J Am Dent Assoc 2012;143:234-40. https://doi.org/10.14219/jada.archive.2012.0147
  23. Makarouna M, Ullmann K, Lazarek K, Boening KW. Six-year clinical performance of lithium disilicate fixed partial dentures. Int J Prosthodont 2011;24:204-6.
  24. Zadeh PN, Lumkemann N, Sener B, Eichberger M, Stawarczyk B. Flexural strength, fracture toughness, and translucency of cubic/tetragonal zirconia materials. J Prosthet Dent 2018;120:948-54. https://doi.org/10.1016/j.prosdent.2017.12.021
  25. Lawson NC, Jurado CA, Huang CT, Morris GP, Burgess JO, Liu PR, Kinderknecht KE, Lin CP, Givan DA. Effect of surface treatment and cement on fracture load of traditional zirconia (3Y), translucent zirconia (5Y), and lithium disilicate crowns. J Prosthodont 2019;28:659-65. https://doi.org/10.1111/jopr.13088
  26. Yan J, Kaizer MR, Zhang Y. Load-bearing capacity of lithium disilicate and ultra-translucent zirconias. J Mech Behav Biomed Mater 2018;88:170-5. https://doi.org/10.1016/j.jmbbm.2018.08.023
  27. Heintze SD, Monreal D, Reinhardt M, Eser A, Peschke A, Reinshagen J, Rousson V. Fatigue resistance of all-ceramic fixed partial dentures - Fatigue tests and finite element analysis. Dent Mater 2018;34:494-507. https://doi.org/10.1016/j.dental.2017.12.005
  28. Kim HK. Optical and mechanical properties of highly translucent dental zirconia. Materials 2020;13:3395. https://doi.org/10.3390/ma13153395
  29. Cho YE, Lim YJ, Han JS, Yeo IS, Yoon HI. Effect of yttria content on the translucency and masking ability of yttria-stabilized tetragonal zirconia polycrystal. Materials 2020;13:4726. https://doi.org/10.3390/ma13214726
  30. Choo SS, Ko KH, Huh YH, Park CJ, Cho LR. Fatigue resistance of anterior monolithic crowns produced from CAD-CAM materials: An in vitro study. J Prosthet Dent 2021;S0022-3913(21)00568-0.
  31. Fischer H, Weber M, Eck M, Erdrich A, Marx R. Finite element and experimental analyses of polymer-based dental bridges reinforced by ceramic bars. J Biomech 2004;37:289-94. https://doi.org/10.1016/j.jbiomech.2003.08.013
  32. Mahmood DJ, Linderoth EH, Vult von Steyern P. The influence of support properties and complexity on fracture strength and fracture mode of allceramic fixed dental prostheses. Acta Odont Scand 2011;69:229-37. https://doi.org/10.3109/00016357.2010.549508
  33. Scherrer SS, de Rijk WG. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int J Prosthodont 1993;6:462-7.
  34. Chun KJ, Choi HH, Lee JY. Comparison of mechanical property and role between enamel and dentin in the human teeth. J Dent Biomech 2014;5:1758736014520809. https://doi.org/10.1177/1758736014520809
  35. Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater 2016;32:908-14. https://doi.org/10.1016/j.dental.2016.03.013
  36. Pereira GKR, Graunke P, Maroli A, Zucuni CP, Prochnow C, Valandro LF, Caldas RA, Bacchi A. Lithium disilicate glass-ceramic vs translucent zirconia polycrystals bonded to distinct substrates: Fatigue failure load, number of cycles for failure, survival rates, and stress distribution. J Mech Behav Biomed Mater 2019;91:122-30. https://doi.org/10.1016/j.jmbbm.2018.12.010
  37. Gardell E, Larsson C, von Steyern PV. Translucent zirconium dioxide and lithium disilicate: A 3-year follow-up of a prospective, practice-based randomized controlled trial on posterior monolithic crowns. Int J Prosthodont 2021;34:163-72. https://doi.org/10.11607/ijp.6795
  38. Sola-Ruiz MF, Baixauli-Lopez M, Roig-Vanaclocha A, Amengual-Lorenzo J, Agustin-Panadero R. Prospective study of monolithic zirconia crowns: clinical behavior and survival rate at a 5-year follow-up. J Prosthodont Res 2021;65:284-90. https://doi.org/10.2186/jpr.JPR_D_20_00034
  39. Ambre MJ, Aschan F, Vult von Steyern P. Fracture strength of yttria-stabilized zirconium-dioxide (YTZP) fixed dental prostheses (FDPs) with different abutment core thicknesses and connector dimensions. J Prosthodont 2013;22:377-82. https://doi.org/10.1111/jopr.12003
  40. Motta AB, Pereira LC, da Cunha AR, Duda FP. The influence of the loading mode on the stress distribution on the connector region of metal-ceramic and all-ceramic fixed partial denture. Artif Organs 2008;32:283-91. https://doi.org/10.1111/j.1525-1594.2008.00544.x
  41. Quinn GD, Studart AR, Hebert C, VerHoef JR, Arola D. Fatigue of zirconia and dental bridge geometry: Design implications. Dent Mater 2010;26:1133-6. https://doi.org/10.1016/j.dental.2010.07.014
  42. Lohbauer U, Amberger G, Quinn GD, Scherrer SS. Fractographic analysis of a dental zirconia framework: a case study on design issues. J Mech Behav Biomed Mater 2010;3:623-9. https://doi.org/10.1016/j.jmbbm.2010.07.004
  43. Larsson C, Holm L, Lovgren N, Kokubo Y, Vult von Steyern P. Fracture strength of four-unit YTZP FPD cores designed with varying connector diameter. An in-vitro study. J Oral Rehabil 2007;34:702-9. https://doi.org/10.1111/j.1365-2842.2007.01770.x
  44. Spies BC, Zhang F, Wesemann C, Li M, Rosentritt M. Reliability and aging behavior of three different zirconia grades used for monolithic four-unit fixed dental prostheses. Dent Mater 2020;36:e329-39. https://doi.org/10.1016/j.dental.2020.08.002
  45. Takuma Y, Nomoto S, Sato T, Sugihara N. Effect of framework design on fracture resistance in zirconia 4-unit all-ceramic fixed partial dentures. Bull Tokyo Dent Coll 2013;54:149-56. https://doi.org/10.2209/tdcpublication.54.149
  46. Murase T, Nomoto S, Sato T, Shinya A, Koshihara T, Yasuda H. Effect of connector design on fracture resistance in all-ceramic fixed partial dentures for mandibular incisor region. Bull Tokyo Dent Coll 2014;55:149-55. https://doi.org/10.2209/tdcpublication.55.149
  47. Junker R, Holler M, Yoshida-Anastasova Y, Frank W, Nothdurft FP. Influence of connector diameter on fracture load of CAD/CAM-processed monolithic lithium disilicate fixed partial dentures. Int J Prosthodont 2019;32:68-70. https://doi.org/10.11607/ijp.5955
  48. Hamza TA, Attia MA, El-Hossary MM, Mosleh IE, Shokry TE, Wee AG. Flexural strength of small connector designs of zirconia-based partial fixed dental prostheses. J Prosthet Dent 2016;115:224-9. https://doi.org/10.1016/j.prosdent.2015.06.022
  49. Plengsombut K, Brewer JD, Monaco EA Jr, Davis EL. Effect of two connector designs on the fracture resistance of all-ceramic core materials for fixed dental prostheses. J Prosthet Dent 2009;101:166-73. https://doi.org/10.1016/S0022-3913(09)60022-6