DOI QR코드

DOI QR Code

기계학습을 활용한 특허수명 예측 및 영향요인 분석

Prediction of patent lifespan and analysis of influencing factors using machine learning

  • 김용우 (한양대학교 기술경영학과) ;
  • 김민구 (한양대학교 기술경영학과) ;
  • 김영민 (한양대학교 기술경영학과)
  • Kim, Yongwoo (Department of Technology Management, Graduate School of Technology & Innovation Management, Hanyang University) ;
  • Kim, Min Gu (Department of Technology Management, Graduate School of Technology & Innovation Management, Hanyang University) ;
  • Kim, Young-Min (Department of Technology Management, Graduate School of Technology & Innovation Management, Hanyang University)
  • 투고 : 2022.05.31
  • 심사 : 2022.06.19
  • 발행 : 2022.06.30

초록

특허의 사적 가치(private value)를 나타내는 특허수명 추정은 오래전부터 연구되었으나 추정과정에서 선형모델에 의존하는 경우가 대부분이었고, 기계학습 방법을 사용하더라도 변수 간 관계에 대한 해석이나 설명이 부족하였다. 본 연구에서는 특허의 생존 기간이 특허의 가치를 대리한다는 기존 연구결과를 바탕으로 특허 등록 이후의 생존 기간(연장횟수) 예측을 통해 특허의 가치를 추정한다. 이를 위해 1996~2017년까지 미국 특허청(USPTO)에 출원하여 등록된 특허 4,033,414개를 수집하였다. 특허수명을 예측하기 위해 기존 연구에서 특허수명에 영향을 미친다고 밝혀진 특허의 특성, 특허의 소유자 특성, 특허의 발명가 특성을 반영할 수 있는 다양한 변수가 사용되었다. 서로 다른 4개의 모델(Ridge Regression, Random Forest, Feed-forward Neural Network, Gradient Boosting Models)을 생성하고, 모델 학습 과정에서는 5-fold Cross Validation으로 초매개변수 조정이 이루어졌다. 이후 생성된 모델의 성능을 평가하고 특허수명을 추정할 수 있는 예측변수의 상대적 중요도를 제시하였다. 또한, 성능이 우수했던 Gradient Boosting Model을 기반으로 Accumulated Local Effects Plot을 제시하여 예측변수와 특허수명 간 관계를 시각적으로 나타내었다. 마지막으로 모델에 의해서 평가된 개별 특허의 평가 근거를 제시하기 위하여 Kernal SHAP(SHapley Additive exPlanations)을 적용하고 특허평가 시스템에의 적용 가능성을 제시한다. 본 연구는 기존에 특허수명을 추정하는 연구에 누적적으로 기여한다는 점 그리고 선형성을 바탕으로 진행된 기존 특허수명 추정 연구들의 한계를 보완하고 복잡한 비선형 관계를 설명가능한 방식으로 제시하였다는 점에서 학문적 의의가 있다. 또한, 개별 특허의 평가 근거를 도출하는 방법을 소개하고 특허평가 시스템에의 적용 가능성을 제시하였다는 점에서 실무적 의의가 있다.

Although the number of patent which is one of the core outputs of technological innovation continues to increase, the number of low-value patents also hugely increased. Therefore, efficient evaluation of patents has become important. Estimation of patent lifespan which represents private value of a patent, has been studied for a long time, but in most cases it relied on a linear model. Even if machine learning methods were used, interpretation or explanation of the relationship between explanatory variables and patent lifespan was insufficient. In this study, patent lifespan (number of renewals) is predicted based on the idea that patent lifespan represents the value of the patent. For the research, 4,033,414 patents applied between 1996 and 2017 and finally granted were collected from USPTO (US Patent and Trademark Office). To predict the patent lifespan, we use variables that can reflect the characteristics of the patent, the patent owner's characteristics, and the inventor's characteristics. We build four different models (Ridge Regression, Random Forest, Feed Forward Neural Network, Gradient Boosting Models) and perform hyperparameter tuning through 5-fold Cross Validation. Then, the performance of the generated models are evaluated, and the relative importance of predictors is also presented. In addition, based on the Gradient Boosting Model which have excellent performance, Accumulated Local Effects Plot is presented to visualize the relationship between predictors and patent lifespan. Finally, we apply Kernal SHAP (SHapley Additive exPlanations) to present the evaluation reason of individual patents, and discuss applicability to the patent evaluation system. This study has academic significance in that it cumulatively contributes to the existing patent life estimation research and supplements the limitations of existing patent life estimation studies based on linearity. It is academically meaningful that this study contributes cumulatively to the existing studies which estimate patent lifespan, and that it supplements the limitations of linear models. Also, it is practically meaningful to suggest a method for deriving the evaluation basis for individual patent value and examine the applicability to patent evaluation systems.

키워드

참고문헌

  1. 박상영, 최영재, & 이성주. (2021). 지속적 활용이 가능한 산학협력 특허 특성 분석. 한국산학기술학회 논문지, 22(3), 568-578.
  2. 장관용, & 양동우. (2014). 특허기술수명에 영향을 미치는 결정요인에 관한 실증 연구: 한국등록특허 갱신데이터를 활용하여. 지식재산연구, 9(2), 79-108.
  3. 추기능, & 박규호. (2010). 특허의 경제적 수명의 결정요인에 관한 연구: 갱신자료를 활용한 생존분석. 지식경영연구, 11(1), 65-81. https://doi.org/10.15813/KMR.2010.11.1.005
  4. Apley, D. W., & Zhu, J. (2020). Visualizing the effects of predictor variables in black box supervised learning models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(4), 1059-1086. https://doi.org/10.1111/rssb.12377
  5. Barirani, A., Beaudry, C., & Agard, B. (2017). Can universities profit from general purpose inventions? The case of Canadian nanotechnology patents. Technological Forecasting and Social Change, 120, 271-283. https://doi.org/10.1016/j.techfore.2017.01.021
  6. Bessen, J. (2008). The value of US patents by owner and patent characteristics. Research Policy, 37(5), 932-945. https://doi.org/10.1016/j.respol.2008.02.005
  7. Choi, Y. M., & Cho, D. (2018), A study on the time-dependent changes of the intensities of factors determining patent lifespan from a biological perspective, World Patent Information, 54, 1-17. https://doi.org/10.1016/j.wpi.2018.05.006
  8. Choi, J., Jeong, B., Yoon, J., Coh, B. Y., & Lee, J. M. (2020). A novel approach to evaluating the business potential of intellectual properties: A machine learning-based predictive analysis of patent lifetime, Computers & Industrial Engineering, 145, 106544. https://doi.org/10.1016/j.cie.2020.106544
  9. Danish, M. S., Ranjan, P., & Sharma, R. (2021), Determinants of patent survival in emerging economies: Evidence from residential patents in India, Journal of Public Affairs, 21(2), e2211.
  10. De Rassenfosse, G., & Jaffe, A. B. (2018). Are patent fees effective at weeding out low quality patents?, Journal of Economics & Management Strategy, 27(1), 134-148. https://doi.org/10.1111/jems.12219
  11. Ernst, H., Leptien, C., & Vitt, J. (2000). Inventors are not alike: The distribution of patenting output among industrial R&D personnel. IEEE Transactions on engineering management, 47(2), 184-199. https://doi.org/10.1109/17.846786
  12. Fisher, A., Rudin, C., & Dominici, F. (2019). All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res., 20(177), 1-81.
  13. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
  14. Guellec, D., & de la Potterie, B. V. P. (2000). Applications, grants and the value of patent, Economics letters, 69(1), 109-114 https://doi.org/10.1016/S0165-1765(00)00265-2
  15. Jaffe, A. B. (2000). The US patent system in transition: policy innovation and the innovation process. Research policy, 29(4-5), 531-557. https://doi.org/10.1016/S0048-7333(99)00088-8
  16. Jaffe, A. B., & Trajtenberg, M. (2002). Patents, citations, and innovations: A window on the knowledge economy. MIT press.
  17. Jaffe, A. B., & Lerner, J. (2011). Innovation and its discontents. In Innovation and Its Discontents. Princeton University Press.
  18. Lanjouw, J. O. (1993), Patent Protection: Of What Value and for How Long?, NBER Working Paper, No. 4475.
  19. Lanjouw, J. O. (1998), Patent protection in the shadow of infringement: Simulation estimations of patent value, The Review of Economic Studies, 65(4), 671-710. https://doi.org/10.1111/1467-937X.00064
  20. Lanjouw, J. O., & Schankerman, M. (2001). Characteristics of patent litigation: a window on competition. RAND journal of economics, 129-151. https://doi.org/10.2307/2696401
  21. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
  22. Molnar, C. (2020). Interpretable machine learning (2nd Edition), Independently published.
  23. Og, J. Y., Pawelec, K., Kim, B. K., Paprocki, R., & Jeong, E. (2020), Measuring patent value indicators with patent renewal information, Journal of Open Innovation: Technology, Market, and Complexity, 6(1), 16. https://doi.org/10.3390/joitmc6010016
  24. Pakes, A., & Schankerman, M. (1984), The rate of obsolescence of patents, research gestation lags, and the private rate of return to research resources, R&D, patents, and productivity, University of Chicago Press.
  25. Pitkethly, R. (1997), The valuation of patents: a review of patent valuation methods with consideration of option based methods and the potential for further research, Research Papers in Management Studies-University of Cambridge Judge Institute of Management Studies.
  26. Reitzig, M. (2002), Valuing patents and patent portfolios from a corporate perspective : theoretical considerations, applied needs and future challenges : background paper for discussion, UN. ECE. High Level Task Force on Valuation and Capitalization of Intellectual Assets, 26.
  27. Reitzig, M. (2004). Improving patent valuations for management purposes-validating new indicators by analyzing application rationales. Research policy, 33(6-7), 939-957. https://doi.org/10.1016/j.respol.2004.02.004
  28. Shapiro, C. (2000). Navigating the patent thicket: Cross licenses, patent pools, and standard setting. Innovation policy and the economy, 1, 119-150. https://doi.org/10.1086/ipe.1.25056143
  29. Scherer, F. M., Harhoff, D., & Kukies, J. (2000), Uncertainty and the size distribution of rewards from innovation, Journal of Evolutionary Economics volume, 10, 175-200. https://doi.org/10.1007/s001910050011
  30. Schankerman, M., & Pakes, A. (1986), Estimates of the Value of Patent Rights in European Countries During the Post-1950 Period. The Economic Journal, 96(384), 1052-1076. https://doi.org/10.2307/2233173
  31. Schankerman, M. (1998), How valuable is patent protection? Estimates by technology field, the RAND Journal of Economics, 29(1), 77-107. https://doi.org/10.2307/2555817
  32. Sullivan, R. J. (1994), Estimates of the value of patent rights in Great Britain and Ireland 1852-1876, Economica, 61(241), 37-58. https://doi.org/10.2307/2555048
  33. Van Zeebroeck, N., Stevnsborg, N., De La Potterie, B. V. P., Guellec, D., & Archontopoulos, E. (2008). Patent inflation in Europe. World Patent Information, 30(1), 43-52. https://doi.org/10.1016/j.wpi.2007.05.010
  34. Van Zeebroeck, N. (2011). The puzzle of patent value indicators. Economics of innovation and new technology, 20(1), 33-62. https://doi.org/10.1080/10438590903038256
  35. Van Zeebroeck, N., & Van Pottelsberghe de la Potterie, B. (2011a). The vulnerability of patent value determinants. Economics of innovation and new technology, 20(3), 283-308. https://doi.org/10.1080/10438591003668638
  36. Van Zeebroeck, N., & Van Pottelsberghe de la Potterie, B. (2011b). Filing strategies and patent value. Economics of innovation and new technology, 20(6), 539-561. https://doi.org/10.1080/10438591003668646