Acknowledgement
This research was supported by the R&D fund by the Ministry of Health and Welfare [grant number HI13C1015], the basic research program through the Korean Brain Research Institute, funded by the Ministry of Science and Information Communications Technology (ICT) (21- BR-05-01) and by the molecular MR study group of KSMRM (2021).
References
- Dunsmoor JE, Paz R. Fear generalization and anxiety: behavioral and neural mechanisms. Biol Psychiatry 2015;78:336-343 https://doi.org/10.1016/j.biopsych.2015.04.010
- Johansen JP, Cain CK, Ostroff LE, LeDoux JE. Molecular mechanisms of fear learning and memory. Cell 2011;147:509-524 https://doi.org/10.1016/j.cell.2011.10.009
- LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci 2000;23:155-184 https://doi.org/10.1146/annurev.neuro.23.1.155
- Pautler RG. In vivo, trans-synaptic tract-tracing utilizing manganese-enhanced magnetic resonance imaging (MEMRI). NMR Biomed 2004;17:595-601 https://doi.org/10.1002/nbm.942
- Yu X, Wadghiri YZ, Sanes DH, Turnbull DH. In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci 2005;8:961-968 https://doi.org/10.1038/nn1477
- Silva AC, Lee JH, Wu CW, et al. Detection of cortical laminar architecture using manganese-enhanced MRI. J Neurosci Methods 2008;167:246-257 https://doi.org/10.1016/j.jneumeth.2007.08.020
- Watanabe T, Natt O, Boretius S, Frahm J, Michaelis T. In vivo 3D MRI staining of mouse brain after subcutaneous application of MnCl2. Magn Reson Med 2002;48:852-859 https://doi.org/10.1002/mrm.10276
- Chan KC, Fu QL, Hui ES, So KF, Wu EX. Evaluation of the retina and optic nerve in a rat model of chronic glaucoma using in vivo manganese-enhanced magnetic resonance imaging. Neuroimage 2008;40:1166-1174 https://doi.org/10.1016/j.neuroimage.2008.01.002
- Pautler RG, Koretsky AP. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 2002;16:441-448 https://doi.org/10.1006/nimg.2002.1075
- Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996;29:162-173 https://doi.org/10.1006/cbmr.1996.0014
- Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage 2012;62:782-790 https://doi.org/10.1016/j.neuroimage.2011.09.015
- Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 5th ed. New York: Academic Press, 2005
- Pautler RG, Silva AC, Koretsky AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Med 1998;40:740-748 https://doi.org/10.1002/mrm.1910400515
- Mori K, Manabe H, Narikiyo K, Onisawa N. Olfactory consciousness and gamma oscillation couplings across the olfactory bulb, olfactory cortex, and orbitofrontal cortex. Front Psychol 2013;4:743 https://doi.org/10.3389/fpsyg.2013.00743
- Imai T. Construction of functional neuronal circuitry in the olfactory bulb. Semin Cell Dev Biol 2014;35:180-188 https://doi.org/10.1016/j.semcdb.2014.07.012
- Kita H, Kitai ST. Amygdaloid projections to the frontal cortex and the striatum in the rat. J Comp Neurol 1990;298:40-49 https://doi.org/10.1002/cne.902980104
- Matyas F, Lee J, Shin HS, Acsady L. The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala. Eur J Neurosci 2014;39:1810-1823 https://doi.org/10.1111/ejn.12610
- Kuniishi H, Yamada D, Wada K, Yamada M, Sekiguchi M. Stress induces insertion of calcium-permeable AMPA receptors in the OFC-BLA synapse and modulates emotional behaviours in mice. Transl Psychiatry 2020;10:154 https://doi.org/10.1038/s41398-020-0837-3
- Shen CJ, Zheng D, Li KX, et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat Med 2019;25:337-349 https://doi.org/10.1038/s41591-018-0299-9
- Chang CH, Grace AA. Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol Psychiatry 2014;76:223-230 https://doi.org/10.1016/j.biopsych.2013.09.020
- Bangasser DA, Lee CS, Cook PA, Gee JC, Bhatnagar S, Valentino RJ. Manganese-enhanced magnetic resonance imaging (MEMRI) reveals brain circuitry involved in responding to an acute novel stress in rats with a history of repeated social stress. Physiol Behav 2013;122:228-236 https://doi.org/10.1016/j.physbeh.2013.04.008
- Zhang GW, Shen L, Tao C, et al. Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior. Nat Neurosci 2021;24:516-528 https://doi.org/10.1038/s41593-020-00784-3
- Jeong KY, Lee C, Cho JH, Kang JH, Na HS. New method of manganese-enhanced magnetic resonance imaging (MEMRI) for rat brain research. Exp Anim 2012;61:157-164 https://doi.org/10.1538/expanim.61.157
- Inui T, Inui-Yamamoto C, Yoshioka Y, Ohzawa I, Shimura T. Activation of efferents from the basolateral amygdala during the retrieval of conditioned taste aversion. Neurobiol Learn Mem 2013;106:210-220 https://doi.org/10.1016/j.nlm.2013.09.003
- Devonshire IM, Burston JJ, Xu L, et al. Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain? Neuroimage 2017;157:500-510 https://doi.org/10.1016/j.neuroimage.2017.06.034