DOI QR코드

DOI QR Code

Selective antibacterial activity of quercetin against Xanthomonas campestris

Quercetin의 식물병원성 세균인 Xanthomonas campestris에 대한 선택적 살균활성

  • Kim, Jeong Yoon (Department of Pharmaceutical Engineering, Institute of Agriculture and Life Science (IALS), Gyeongsang National University) ;
  • Kim, Ju Yeon (Department of Pharmaceutical Engineering, Institute of Agriculture and Life Science (IALS), Gyeongsang National University) ;
  • Seo, Sung-Jun (Department of Agriculture Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University) ;
  • Seo, Min-Kyung (Eco-Friendly Agri-Bio Research Center, Jeonam Bioindustry Foundation) ;
  • Kim, Jin-Seong (Department of Agriculture Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University) ;
  • Kang, Sang-Woo (Department of Agriculture Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University) ;
  • Oh, Kyeong-Yeol (Department of Agriculture Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University) ;
  • Kim, Jin-Hyo (Department of Agriculture Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University)
  • Received : 2022.04.07
  • Accepted : 2022.05.17
  • Published : 2022.06.30

Abstract

Quercetin is a major flavonoid in onion and known to antimicrobial activity against several pathogenic bacteria. However, the antibacterial activity of quercetin had not been evaluated against plant pathogenic Xanthomonas campestris and Erwinia carotovora. In here, quercetin and the solvent extracts of onion were investigated their antibacterial activity. Quercetin showed a selective inhibitory activity against X. campestris, and the minimal inhibition concentration (MIC) and minimal bactericidal concentration of quercetin were 15.6 and 20.0 ㎍ mL-1 respectively. Otherwise, it showed no inhibitory activity against E. carotovora, and no the additive and the synergistic effects with streptomycin on X. campestris. And the EtOAc extract from the peel of onion that contained quercetin showed 2-fold lower MIC (500 ㎍ mL-1) than the EtOH extract, thus EtOAc was suggested as the extraction solvent for quercetin from onion peel.

양파의 주요 flavonoid 성분인 quercetin에 대한 항균 활성은 일부 알려져 있으나, 식물 병원성 세균인 X. campestris와 E. carotovora에 대한 활성은 알려져 있지 않았다. 본 연구에서는 quercetin과 양파 추출물을 활용하여 이들 식물병원균에 대한 항균 활성과 농용 항생제인 streptomycin과의 synergistic 효과를 평가하였으나, E. carotovora에 대한 항균 활성은 없었다. 하지만, X. campestris에서는 다른 세균류에서 알려진 MIC보다 10배 이상 낮은 15.6 ㎍ mL-1이었으며, MBC는 20.0 ㎍ mL-1으로 X. campestris에 대해 높은 선택적 항균 활성을 확인할 수 있었다. 다만, 농업용 항생제로 사용중인 streptomycin과의 약효상승 효과는 없었다. 또한, quercetin은 양파껍질의 EtOAc와 EtOH 추출물로부터 확보할 수 있었으며, EtOAc 추출물에서 quercetin 순도가 높음을 확인하였고, 이에 따라 EtOH 추출물보다 2배 가량 높은 항균 활성(MIC = 500 ㎍ mL-1)이 확인되었다.

Keywords

Acknowledgement

This study was carried out with the support of "Research Program for Agricultural Science & Technology Development (PJ01571605)", Rural Development Administration, Republic of Korea.

References

  1. Oh KY, Jeong DK, Song YH, Lee DY, Kim JH (2021) Antifungal Activities of the Crude Extracts and Their Fractions from Medicinal Herbs Against Plant Pathogenic Fungi. Korean J Pestic Sci 25(4): 263-275. doi:10.7585/KJPS.2021.25.4.263.
  2. Lee DY, Cheong MS, Bae JY, Kim JH (2019) Development of New Plant Root Growth Suppressants from 1-Aryl ethanolamines. Korean J Pestic Sci 23(2): 111-115. doi:10.7585/kjps.2019.23.2.111
  3. El-Saber Batiha G, Beshbishy AM, Ikram M, Mulla ZS, Abd El-Hack ME, Taha AE, Algammal AM, Ali Elewa YH (2020) The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 9(3): 374. doi:10.3390/FOODS9030374
  4. Cheong MS, Lee DY, Seo KH, Choi GH, Song YH, Park KH, Kim JH (2019) Phenylephrine, a small molecule, inhibits pectin methylesterases. Biochem Biophys Res Commun 508(1): 320-325. doi:10.1016/J.BBRC.2018.11.117
  5. Kim DH, Khan H, Ullah H, Hassan STS, Smejkal K, Efferth T, Mahomoodally MF, Xu S, Habtemariam S, Filosa R (2019) MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol Res 147: 104346. doi:10.1016/J.PHRS.2019.104346
  6. Pang B, Xu X, Lu Y, Jin H, Yang R, Jiang C, Shao D, Liu Y, Shi J (2019) Prediction of new targets and mechanisms for quercetin in the treatment of pancreatic cancer, colon cancer, and rectal cancer. Food Funct 10(9): 5339-5349. doi:10.1039/C9FO01168D
  7. Zhang Z, Li B, Xu P, Yang B (2019) Integrated Whole Transcriptome Profiling and Bioinformatics Analysis for Revealing Regulatory Pathways Associated With Quercetin-Induced Apoptosis in HCT-116 Cells. Front Pharmacol 10: 798. doi:10.3389/FPHAR.2019.00798/BIBTEX
  8. Lesjak M, Beara I, Simin N, Pintac D, Majkic T, Bekvalac K, Orcic D, Mimica-Dukic N (2018) Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 40: 68-75. doi:10.1016/j.jff.2017.10.047
  9. Lesjak M, Balesaria S, Skinner V, Debnam, E.S, Srai SKS (2019) Quercetin inhibits intestinal non-haem iron absorption by regulating iron metabolism genes in the tissues. Eur J Nutr 58: 743-753. doi:10.1007/S00394-018-1680-7/FIGURES/5
  10. Xu D, Hu MJ, Wang YQ, Cui YL (2019) Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 24(6): 1123. doi:10.3390/MOLECULES24061123
  11. Junior SD da C, Santos JV de O, Campos LA de A, Pereira MA, Magalhaes NSS, Cavalcanti IMF (2018) Antibacterial and antibiofilm activities of quercetin against clinical isolates of Staphyloccocus aureus and Staphylococcus saprophyticus with resistance profile. Int J Environ Agric Biotechnol 3(5): 1948-1958. doi:10.22161/IJEAB/3.5.50
  12. Li X, Yang X, Wang Z, Liu Y, Guo J, Zhu Y, Shao J, Li J, Wang L, Wang K (2022) Antibacterial, antioxidant and biocompatible nanosized quercetin-PVA xerogel films for wound dressing. Colloids Surfaces B Biointerfaces 209: 112175. doi:10.1016/J.COLSURFB.2021.112175
  13. Pal A, Tripathi A (2020) Demonstration of bactericidal and synergistic activity of quercetin with meropenem among pathogenic carbapenem resistant Escherichia coli and Klebsiella pneumoniae. Microb Pathog 143: 104120. doi:10.1016/J.MICPATH.2020.104120
  14. Sahyon HA, Ramadan ENM, Mashaly MMA (2019) Synergistic Effect of Quercetin in Combination with Sulfamethoxazole as New Antibacterial Agent: In Vitro and In Vivo Study. Pharm Chem J 53: 803-813. doi:10.1007/S11094-019-02083-Z
  15. Vipin C, Saptami K, Fida F, Mujeeburahiman M, Rao SS, Athmika Arun AB, Rekha PD (2020) Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa. PLoS One 15: e0241304. doi:10.1371/JOURNAL.PONE.0241304
  16. Teran Baptista ZP, de los Angeles Gomez A, Kritsanida M, Grougnet R, Mandova T, Aredes Fernandez PA, Sampietro DA (2020) Antibacterial activity of native plants from Northwest Argentina against phytopathogenic bacteria. Nat Prod Res 34: 1782-1785. doi:10.1080/14786419.2018.1525716
  17. Fontana R, Caproni A, Buzzi R, Sicurella M, Buratto M, Salvatori F, Pappada M, Manfredini S, Baldisserotto A, Marconi P (2021) Effects of Moringa oleifera Leaf Extracts on Xanthomonas campestris pv. campestris. Microorganisms 9: 2244. doi:10.3390/MICROORGANISMS9112244
  18. Maddox CE, Laur LM, Tian L (2010) Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr Microbiol 60: 53-58. doi:10.1007/S00284-009-9501-0
  19. Baker R, Bragard C, Candresse T, Gilioli G, Gregoire JC, Winter S (2014) Scientific Opinion on the pest categorisation of Rhagoletis cingulata (Loew). EFSA J 12(10): 3854. doi:10.2903/J.EFSA.2014.3854
  20. Kim JH, Cheong SS, Lee KK, Yim JR, Lee WH (2015) Determination of Economic Control Thresholds for Bacterial Spot on Red Pepper Caused by Xanthomonas campestris pv. vesicatoria. Research in Plant Disease 21(2): 89-93. doi:10.5423/RPD.2015.21.2.089
  21. Jee SN, Malhotra S, Roh EJ, Jung KS, Lee DW, Choi JH, Yoon JC, Heu SG (2012) Isolation of Bacteriophages Which Can Infect Pectobacteirum carotovorum subsp. carotovorum. Res Plant Dis 18(3): 225-230. doi:10.5423/rpd.2012.18.3.225
  22. Lee SM, Choi HY, Jang SK, Kim H, Lee SW, Choi HJ (2018) Development of an Efficient Bioassay Method for Testing Resistance to Bacterial Soft Rot of Radish. 24(3): 193-201. doi:10.5423/RPD.2018.24.3.193
  23. Shu Y, Liu Y, Li L, Feng J, Lou BY, Zhou XD, Wu HK (2011) Antibacterial activity of quercetin on oral infectious pathogens Afr J Microbiol Res 5:5358-5361 doi:10.5897/Ajmr11.849
  24. Amin MU, Khurram M, Khattak B, Khan J (2015) Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement. Altern Med 15: 59. doi:10.1186/S12906-015-0580-0
  25. Qu S, Dai C, Shen Z, Tang Q, Wang H, Zhai B, Zhao L, Hao Z (2019) Mechanism of Synergy Between Tetracycline and Quercetin Against Antibiotic Resistant Escherichia coli. Front Microbiol 10: 2536. doi:10.3389/FMICB.2019.02536/BIBTEX
  26. Ko MJ, Cheigh CI, Cho SW, Chung MS (2011) Subcritical water extraction of flavonol quercetin from onion skin. J Food Eng 102: 327-333. doi:10.1016/J.JFOODENG.2010.09.008