DOI QR코드

DOI QR Code

Several models for tunnel boring machine performance prediction based on machine learning

  • Mahmoodzadeh, Arsalan (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Nejati, Hamid Reza (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Ibrahim, Hawkar Hashim (Department of Civil Engineering, College of Engineering, Salahaddin University-Erbil) ;
  • Ali, Hunar Farid Hama (Department of Civil Engineering, University of Halabja) ;
  • Mohammed, Adil Hussein (Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil) ;
  • Rashidi, Shima (Department of Computer Science, College of Science and Technology, University of Human Development) ;
  • Majeed, Mohammed Kamal (Information Technology Department, Faculty of Science, Tishk International University (TIU))
  • 투고 : 2021.08.20
  • 심사 : 2022.05.04
  • 발행 : 2022.07.10

초록

This paper aims to show how to use several Machine Learning (ML) methods to estimate the TBM penetration rate systematically (TBM-PR). To this end, 1125 datasets including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), punch slope index (PSI), distance between the planes of weakness (DPW), orientation of discontinuities (alpha angle-α), rock fracture class (RFC), and actual/measured TBM-PRs were established. To evaluate the ML methods' ability to perform, the 5-fold cross-validation was taken into consideration. Eventually, comparing the ML outcomes and the TBM monitoring data indicated that the ML methods have a very good potential ability in the prediction of TBM-PR. However, the long short-term memory model with a correlation coefficient of 0.9932 and a route mean square error of 2.68E-6 outperformed the remaining six ML algorithms. The backward selection method showed that PSI and RFC were more and less significant parameters on the TBM-PR compared to the others.

키워드

참고문헌

  1. Bai, X.D., Cheng, W.C., Ong, D.E.L. and Ge Li. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning.", Geomech. Eng., 25(1), 59-73. http://dx.doi.org/10.12989/gae.2021.25.1.059.
  2. Benardos, A.G. and Kaliampakos, D.C. (2004), "Modelling TBM performance with artificial neural networks", Tunn. Undergr. Sp. Tech., 19(6), 597-605. https://doi.org/10.1016/j.tust.2004.02.128.
  3. Fattahi, H. (2019), "Tunnel boring machine penetration rate prediction based on relevance vector regression", Int. J. Optim. Civil Eng., 9(2), 343-353. https://www.sid.ir/EN/JOURNAL/ViewPaper.aspx?ID=699797.
  4. Goh, A.T.C., Zhang, W.G., Zhang, Y.M., Xiao, Y. and Xiang, Y.Z. (2018), "Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach", Bull. Eng. Geol. Environ., 77, 489-500. https://doi.org/10.1007/s10064-016-0937-8.
  5. Ghasemi, E., Yagiz, S. and Ataei, M. (2014), "Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic", Bull. Eng. Geol. Environ., 73, 23-35. https://doi.org/10.1007/s10064-013-0497-0
  6. Gholamnejad, J. and Tayarani, N. (2010), "Application of artificial neural networks to the prediction of tunnel boring machine penetration rate", Min. Sci. Tech., 20(5), 0727-0733. https://doi.org/10.1016/S1674-5264(09)60271-4.
  7. Gholami, M., Shahriar, K., Sharifzadeh, M. and Hamidi, J.K. (2012), "A comparison of artificial neural network and multiple regression analysis in TBM performance prediction", In: ISRM Regional Symposium-7th Asian Rock Mechanics Symposium, International Society for Rock Mechanics. https://onepetro.org/ISRMARMS/proceedingsabstract/ARMS712/All-ARMS712/ISRM-ARMS7-2012-115/39877.
  8. Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P. and Ng, A.Y. (2019), "Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network", Nature Medicine, 25(1), 65. https://www.nature.com/articles/s41591-018-0268-3. https://doi.org/10.1038/s41591-018-0268-3
  9. Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A. and Tavakoli, H.R. (2010), "TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel", Rock Mech. Rock Eng., 43(4), 427-445. https://doi.org/10.1007/s00603-009-0060-2.
  10. Jahed Armaghani, D., Mohamad, E.T., Narayanasamy, M.S., Narita, N. and Yagiz, S. (2017), "Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition", Tunn. Undergr. Sp. Tech., 63, 29-43. http://dx.doi.org/10.1016/j.tust.2016.12.009.
  11. Jahed Armaghani, D., Koopialipoor, M., Marto, A. and Yagiz, S. (2019), "Application of several optimization techniques for estimating TBM advance rate in granitic rocks", J. Rock Mech. Geotech. Eng., 11, 779-789. https://doi.org/10.1016/j.jrmge.2019.01.0 02.
  12. Kumar, J., Goomer, R. and Singh, A.K. (2018), "Long short term memory recurrent neural network (lstm-rnn) based workload forecasting model for cloud datacenters", Procedia Comput. Sci., 125, 676-682. https://doi.org/10.1016/j.procs.2017.12.087.
  13. Khandelwal, M. and Jahed Armaghani, D. (2016). "Prediction of drillability of rocks with strength properties using a hybrid GAANN technique", Geotech. Geol. Eng., 34, 605-620. https://doi.org/10.1007/s10706-015-9970-9
  14. Koopialipoor, M., Nikouei, S.S., Marto, A., Fahimifar, A., Jahed Armaghani, D. and Mohamad, E.T. (2018). "Predicting tunnel boring machine performance through a new model based on the group method of data handling", Bul. Eng. Geol. Environ., 78, 3799-3813. https://doi.org/10.1007/s10064-018-1349-8.
  15. Li, J., Li, P., Guo, D., Li, X. and Chen, Z. (2020), "Advanced prediction of tunnel boring machine performance based on big data", Geosci. Front., 12(1), 331-338, https://doi.org/10.1016/j.gsf.2020.02.011.
  16. Liu, J., Jiang, Y., Zhang, Y. and Sakaguchi, O. (2021a), "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns", Geomech. Eng., 25(6), 439-454. http://dx.doi.org/10.12989/gae.2021.25.6.439.
  17. Liu, L.L., Yang, C. and Wang, X.M. (2021b), "Landslide susceptibility assessment using feature selection-based machine learning models", Geomech. Eng., 25(1), 1-16. http://dx.doi.org/10.12989/gae.2021.25.1.001.
  18. Mikaeil, R., Naghadehi, M.Z. and Sereshki, F. (2009). "Multifactorial fuzzy approach to the penetrability classification of TBM in hard rock conditions", Tunn. Undergr. Sp. Technol., 24(5), 500-505. https://doi.org/10.1016/j.tust.2008.12.007.
  19. Mahdevari, S., Shahriar, K., Yagiz, S. and Shirazi, M.A. (2014), "A support vector regression model for predicting tunnel boring machine penetration rates", Int. J. Rock Mech. Min. Sci., 72, 214-229. http://dx.doi.org/10.1016/j.ijrmms.2014.09.012.
  20. Minh, V.T., Katushin, D., Antonov, M. and Veinthal, R. (2017), "Regression models and fuzzy logic prediction of TBM penetration rate", Open Eng., 7, 60-68. https://doi.org/10.1515/eng-2017-0012.
  21. Oraee, K., Khorami, M.T. and Hosseini, N. (2012), "Prediction of the penetration rate of TBM using adaptive neuro fuzzy inference system (ANFIS)", Proceeding of SME Annual Meeting & Exhibit, From the Mine to the Market, Now It's Global, Seattle, WA, USA. 297-302. https://doi.org/10.13140/2.1.3707.7445.
  22. Salimi, A. and Esmaeili, M. (2013), "Utilizing of linear and nonlinear prediction tools for evaluation of penetration rate of tunnel boring machine in hard rock condition", Int. J. Min. Mineral Eng., 4(3), 249-264. https://doi.org/10.1504/IJMME.2013.053172.
  23. Salimi, A., Rostami, J., Moormann, C. and Delisio, A. (2016), "Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs", Tunn. Undergr. Sp. Tech., 58, 236-246 http://dx.doi.org/10.1016/j.tust.2016.05.009.
  24. Shao, C., Li, X. and Su, H. (2013), "Performance Prediction of Hard Rock TBM Based on Extreme Learning Machine", (Eds., Lee, J., Lee, M.C., Liu, H., Ryu, J.H.) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science, 8103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40849-6_40
  25. Seifert, C., Aamir, A., Balagopalan, A., Jain, D., Sharma, A., Grottel, S. and Gumhold, S. (2017), "Visualizations of deep neural networks in computer vision: A survey", In Transparent Data Mining for Big and Small Data, 123-144.
  26. Vapnik, V.N. (2000), "The nature of statistical learning theory. New York", https://doi.org/10.1007/978-1-4757-3264-1.
  27. Xiang, G., Yin, D., Cao, C. and Yuan, L. (2021), "Application of artificial neural network for prediction of flow ability of soft soil subjected to vibrations", Geomech. Eng., 25(5), 395-403. https://doi.org/10.12989/gae.2021.25.5.395.
  28. Xu, H., Zhou, J., Asteris, P.G., Jahed Armaghani, D. and Tahir, M.M. (2019). "Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate", Appl. Sci., 9, 3715. https://doi.org/10.3390/app9183715.
  29. Yagiz, S., Gokceoglu, C., Sezer, E. and Iplikci, S. (2009). "Application of two non-linear prediction tools to the estimation of tunnel boring machine performance", Eng. Appl. Artifi. Intel., 22(4-5), 808-814. https://doi.org/10.1016/j.engappai.2009.03.007.
  30. Yagiz, S. and Karahan, H. (2011), "Prediction of hard rock TBM penetration rate using particle swarm optimization", Int. J. Rock Mech. Min. Sci., 48(3), 427-433. https://doi.org/10.1016/j.ijrmms.2011.02.013.
  31. Yagiz, S. and Karahan, H. (2015). "Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass", Int. J. Rock Mech. Min. Sci., 80, 308-315. http://dx.doi.org/10.1016/j.ijrmms.2015.09.019.
  32. Torabi, S.R., Shirazi, H., Hajali, H. and Monjezi, M. (2013). "Study of the influence of geotechnical parameters on the TBM performance in Tehran-Shomal highway project using ANN and SPSS", Arabian J. Geosci., 6, 1215-1227. https://doi.org/10.1007/s12517-011-0415-3.
  33. Zhou, J., Yazdani Bejarbaneh, B., Jahed Armaghani, D. and Tahir, M.M. (2020). "Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques", Bull. Eng. Geol. Environ., 79, 2069-2084. https://doi.org/10.1007/s10064-019-01626-8.
  34. Zhang, P., Wu, H.N., Chen, R.P. and Chan, T.H.T. (2020), "Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: A comparative study", Tunn. Undergr. Sp. Tech., 99, 103383. https://doi.org/10.1016/j.tust.2020.103383.