참고문헌
- Aydan, O., Akagi, T. and Kawamoto, T. (1993), "The squeezing potential of rocks around tunnels; theory and prediction", Rock Mech. Rock Eng., 26(2), 137-163. https://doi.org/10.1007/BF01023620.
- Barton, N., Lien, R. and Lunde, J. (1974), "Engineering classification of rock masses for the design of tunnel support", Rock Mech., 6, 189-236. https://doi.org/10.1007/BF01239496.
- Bai, X., Cheng, W.C., Ong, D.E.L. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
- Fatemi Aghda, S.M., Ganjalipour, K. and Esmaeil Zadeh, M. (2016), "Comparison of squeezing prediction methods: A case study on Nowsoud tunnel", Geotech. Geol. Eng., 34(5), 1487-1512. https://doi.org/10.1007/s10706-016-0056-0.
- Feng, X.T., Zhao, H.B. and Li, S.J. (2004), "Modeling non-linear displacement time series of geo-materials using evolutionary support vector machines", Int. J. Rock Mech. Min. Sci., 41(7), 1087-1107. https://doi.org/10.1016/J.IJRMMS.2004.04.003.
- Ghasemi, E. and Gholizadeh, H. (2018), "Prediction of squeezing potential in tunneling projects using data mining-based techniques", Geotech. Geol. Eng., 1-10. https://doi.org/10.1007/s10706-018-0705-6.
- Grelle, G. and Guadagno, F.M. (2012), "Regression analysis for seismic slope instability based on a double phase viscoplastic sliding model of the rigid block", Landslides, 10(5), 583-597. https://doi.org/10.1007/s10346-012-0350-8.
- Goel, R.K. (1995), "Correlations for predicting support pressures and closures in tunnels", Ph.D. Thesis, University of Nagpur, India, 310p.
- Hoek, E. (1998), "Tunnel support in weak rock", In: Proceeding of regional symposium on sedimentary rock engineering", Keynote address, Symposium of Sedimentary Rock Engineering, Taipei, Taiwan, November 20-22, 1998.
- Hoek, E. and Marinos, P. (2000), "Predicting tunnel squeezing problems in weak heterogeneous rock masses", Tunn. Tunn. Int., 32(11), 45-51. Corpus ID: 130823387
- Hoek, E. (2001), "Big tunnels in bad rock", J. Geotech. Geoenviron. Eng., 127(9), 726-740. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(726).
- Jethwa, J.L, Singh., B. and Singh, B. (1984), "Estimation of ultimate rock pressure for tunnel linings under squeezing rock conditions-a new approach", (Eds., Brown, E.T. and Hudson, J.A.), Proceedings of ISRM symposium on design and performance of underground excavations, Cambridge, 231-238. https://www.icevirtuallibrary.com/doi/abs/10.1680/dapoue.35652.0028
- Kang, F., Han, S.X., Salgado, R. and Li, J.J. (2015), "System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling", Comput. Geotech., 63(1), 13-25. https://doi.org/10.1016/j.compgeo.2014.08.010.
- Khishe, M. and Mosavi, M.R. (2020). "Chimp optimization algorithm", Exp. Syst. with Appl., 149, 113338. https://doi.org/10.1016/j.eswa.2020.113338.
- Khishe, M. and Mosavi, M.R. (2019), "Improved whale trainer for sonar datasets classification using neural network", Appl. Acoust., 154, 176-192. https://doi.org/10.1016/j.apacoust.2019.05.006.
- Li, L.P., Shi, S.S., Zhang, Q.Q., Zhang, J. and Hu, J. (2017), "Gaussian process model of water in flow prediction in tunnel construction and its engineering applications", Tunn. Undergr. Sp. Tech., 69, 155-161. https://doi.org/10.1016/j.tust.2017.06.018.
- Liu, R., Liu, E., Yang, J., Li, M. and Wang, F. (2006), "Optimizing the hyper-parameters for SVM by combining evolution strategies with a grid search", In: International conference on intelligent computing, Kunming, China, 44, 712-721. https://doi.org/10.1007/978-3-540-37256-1_87.
- Liu, Z.B., Shao, J.F., Xu, W.Y., Chen, H.J. and Shi, C. (2014), "Comparison on landslide non-linear displacement analysis and prediction with computational intelligence approaches", Landslides, 11(5), 889-896. https://doi.org/10.1007/s10346-013-0443-z.
- Li, B., Fu, Y., Hong, Y. and Gao, Z (2021), "Deterministic and probabilistic analysis of tunnel face stability using support vector machine", Geomech. Eng., 25(1), 17-30. https://doi.org/10.12989/gae.2021.25.1.017.
- Liu, J., Jiang, Y., Zhang, Y. and Sakaguchi, O. (2021), "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns", Geomech. Eng., 25(6), 439-454. https://doi.org/10.12989/gae.2021.25.6.439.
- Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., HIbrahim, H.H., Hama-Ali, H.H., Nejati, H.R. and Rashidi S. (2022). "Prediction of duration and construction cost of road tunnels using Gaussian process regression", Geomech. Eng., 28(1), 65-75. https://doi.org/10.12989/gae.2021.28.1.065.
- Mosavi, M., Kaveh, M., Khishe, M. and Aghababaie, M. (2018), "Design and implementation a sonar data set classifier using multi-layer perceptron neural network trained by elephant herding optimization", Iran. J. Marine Tech., 5(1), 1-12. http://ijmt.iranjournals.ir/article_31015.html?lang=en.
- Mosavi, M., Khishe, M. and Moridi, A. (2016). "Classification of sonar target using hybrid particle swarm and gravitational search", Iran. J. Marine Tech., 3(1), 1-13. http://ijmt.iranjournals.ir/article_19580.html?lang=en
- Mosavi, M.R. and Khishe, M., Hatam Khani, Y. and Shabani, M. (2017), "Training radial basis function neural network using stochastic fractal search algorithm to classify sonar dataset", Iran. J. Elec. Electronic Eng., 13(1), 100-111. http://ijeee.iust.ac.ir/article-1-959-en.html.
- Pal, M. and Deswal, S. (2010), "Modelling pile capacity using Gaussian process regression", Comput. Geotech., 37, 942-947. https://doi.org/10.1016/j.compgeo.2010.07.012.
- Quinonero-Candela, J. and Rasmussen, C.E. (2005), "A unifying view of sparse approximate Gaussian process regression", J. Mach. Learn. Res., 6, 1939-1959. https://doi.org/10.5555/1046920.1194909.
- Rohmer, J. and Foerster, E. (2011), "Global sensitivity analysis of large-scale numerical land-slide models based on Gaussian-Process metamodeling", Comput. Geosci., 37(7), 91-927. https://doi.org/10.1016/j.cageo.2011.02.020.
- Sakurai, S. (1983), "Displacement measurements associated with the design on underground openings", (Ed., Kova'ri, K.) Proceedings of the international symposium on field measurements in geomechanics, Balkema, Zurich.
- Schulz, E., Speekenbrink, M. and Krause, A. (2018), "A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions", J. Math. Psychology, 85, 1-16. https://doi.org/10.1016/j.jmp.2018.03.001.
- Singh, B., Jethwa, J.L., Dube, A.K. and Singh, B. (1992), "Correlation between observed support pressure and rock mass quality", Tunn. Undergr. Sp. Tech., 7, 59-74. https://doi.org/10.1016/0886-7798(92)90114-W.
- Wang, D.D., Qiu, G.Q., Xie, W.B. and Wang, Y. (2012), "Deformation prediction model of surrounding rock based on GA-LSSVM-markov", Nat. Sci., 4(2), 85-90. https://doi.org/10.4236/ns.2012.42013.
- Wenner, D. and Wannenmacher, H. (2008), "Technical challenges during construction of Alborz service tunnel, Iran", Geomechanik und Tunnelbau, 1(6), 537-542. https://doi.org/10.1002/geot.200800065.
- Xiang, G., Ying, D., Gao, C. and Yuan, L. (2021), "Application of artificial neural network for prediction of flow ability of soft soil subjected to vibrations', Geomech. Eng., 25(5), 395-403. https://doi.org/10.12989/gae.2021.25.5.395.
- Yuan, J., Wang, K., Yu, T. and Fang, M. (2008), "Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression", Int. J. Mach. Tools Manuf., 48, 47-60. https://doi.org/10.1016/j.ijmachtools.2007.07.011.