DOI QR코드

DOI QR Code

Characterization of Anthraquinone-Based Electron Acceptors for Organic Solar Cells

유기태양전지용 안트라퀴논 기반 전자 받게 분자의 특성 분석

  • Received : 2022.03.23
  • Accepted : 2022.04.07
  • Published : 2022.07.01

Abstract

Recently many efforts have been made to develop a novel class of non-fullerene electron acceptor materials for high-performance organic solar cells. In this work, anthraquinone derivatives, TMAQ and THAQ, were prepared and their availability as electron acceptor materials for organic solar cells were investigated in terms of optical, thermal, electrochemical properties, and solar cell devices. Compared to TMAQ, a significant bathochromic shift of absorption band was observed for THAQ owing to intramolecular hydrogen-bond-assisted CT interactions. Thanks to the fused aromatic ring structure and benzoquinone unit, both TMAQ and THAQ exhibited a high thermal stability and an efficient electron reduction process. In particular, the intramolecular O-H---O=C hydrogen bond of THAQ plays an important role in improving the thermal stability and electron reduction properties. In the P3HT:acceptor solar cell system, THAQ-based devices had more than ca. 6 times higher power conversion efficiency than TMAQ -based devices. These results serve as a guide for developing high-efficient anthraquinone-based electron acceptor materials.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03035785).

References

  1. G. Zhang, J. Zhao, P.C.Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, Chem. Rev., 118, 3447 (2018). [DOI: https://doi.org/10.1021/acs.chemrev.7b00535]
  2. A. Wadsworth, M. Moser, A. Marks, M. S. Little, N. Gasparini, C. J. Brabec, D. Baran, and I. McCulloch, Chem. Soc. Rev., 48, 1596 (2019). [DOI: https://doi.org/10.1039/C7CS00892A]
  3. G. Zarren, B. Nisar, and F. Sher, Mater. Today Sustainability, 5, 100019 (2019). [DOI: https://doi.org/10.1016/j.mtsust.2019.100019]
  4. T. Takeda, Y. Kasahara, and T. Akutagawa, RSC Adv., 11, 24217 (2021). [DOI: https://doi.org/10.1039/D1RA03985G]
  5. X. Deng, L. Zheng, C. Yang, Y. Li, G. Yu, and Y. Cao, J. Phys. Chem. B, 108, 3451 (2004). [DOI: https://doi.org/10.1021/jp036649i]
  6. L. Xu, C. Liu, Z. Qin, R. Jiang, and Y. Li, Eur. J. Org. Chem., 2013, 300 (2013). [DOI: https://doi.org/10.1002/ejoc.201200980]
  7. X. You, J. Hu, M. Wu, H. Huang, G. Shao, J. Zhang, D. Wu, and J. Xia, Chem. Eur. J., 25, 12137 (2019). [DOI: https://doi.org/10.1002/chem.201902302]
  8. T. T. Do, K. Rundel, Q. Gu, E. Gann, S. Manzhos, K. Feron, J. Bell, C. R. McNeill, and P. Sonar, New J. Chem., 41, 2899 (2017). [DOI: https://doi.org/10.1039/C6NJ03938C]
  9. J. F. Lee, S.L.C. Hsu, P. I. Lee, H. Y. Chuang, J. S. Chen, and W. Y. Chou, Sol. Energy Mater. Sol. Cells, 96, 218 (2012). [DOI: https://doi.org/10.1016/j.solmat.2011.09.060]
  10. S. Norvez, J. Org. Chem., 58, 2414 (1993). [DOI: https://doi.org/10.1021/jo00061a012]
  11. H. Quast and H. L. Fuchsbauer, Chem. Ber., 119, 1016 (1986). [DOI: https://doi.org/10.1002/cber.19861190323]
  12. T. Takeda and T. Akutagawa, Chem. Commun., 56, 10564 (2020). [DOI: https://doi.org/10.1039/D0CC04611F]
  13. Y. Ichino, J. P. Ni, Y. Ueda, and D. K. Wang, Synth. Met., 116, 223 (2001). [DOI: https://doi.org/10.1016/S0379-6779(00)00457-4]
  14. G. B. Rocha, R. O. Freire, A. M. Simas, and J.J.P. Stewart, J. Comput. Chem., 27, 1101 (2006). [DOI: https://doi.org/10.1002/jcc.20425]
  15. P. Mondal, S. Roy, G. Loganathan, B. Mandal, D. Dharumadurai, M. A. Akbarsha, P. S. Sengupta, S. Chattopadhyay, and P. S. Guin, Biochem. Biophys. Rep., 4, 312 (2015). [DOI: https://doi.org/10.1016/j.bbrep.2015.10.008]
  16. B. M. Illescas and N. Martin, C. R. Chim., 9, 1038 (2006). [DOI: https://doi.org/10.1016/j.crci.2005.11.016]
  17. M. Eo, H. J. Bae, M. Hong, Y. Do, S. Cho, and M. H. Lee, Dalton Trans., 42, 8104 (2013). [DOI: https://doi.org/10.1039/C3DT50509J]
  18. I. C. Ghosekar and G. C. Patil, Semicond. Sci. Technol., 36, 045005 (2021). [DOI: https://doi.org/10.1088/1361-6641/abe21b]
  19. S. Wheeler, F. Deledalle, N. Tokmoldin, T. Kirchartz, J. Nelson, and J. R. Durrant, Phys. Rev. Appl., 4, 024020 (2015). [DOI: https://doi.org/10.1103/PhysRevApplied.4.024020]
  20. J. Reinhardt, M. Grein, C. Buhler, M. Schubert, and U. Wurfel, Adv. Energy Mater., 4, 1400081 (2014). [DOI: https://doi.org/10.1002/aenm.201400081