DOI QR코드

DOI QR Code

Volatile Memristor-Based Artificial Spiking Neurons for Bioinspired Computing

  • Yoon, Soon Joo (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Lee, Yoon Kyeung (Division of Advanced Materials Engineering, Jeonbuk National University)
  • Received : 2022.05.10
  • Accepted : 2022.06.02
  • Published : 2022.07.01

Abstract

The report reviews recent research efforts in demonstrating a computing system whose operation principle mimics the dynamics of biological neurons. The temporal variation of the membrane potential of neurons is one of the key features that contribute to the information processing in the brain. We first summarize the neuron models that explain the experimentally observed change in the membrane potential. The function of ion channels is briefly introduced to understand such change from the molecular viewpoint. Dedicated circuits that can simulate the neuronal dynamics have been developed to reproduce the charging and discharging dynamics of neurons depending on the input ionic current from presynaptic neurons. Key elements include volatile memristors that can undergo volatile resistance switching depending on the voltage bias. This behavior called the threshold switching has been utilized to reproduce the spikes observed in the biological neurons. Various types of threshold switch have been applied in a different configuration in the hardware demonstration of neurons. Recent studies revealed that the memristor-based circuits could provide energy and space efficient options for the demonstration of neurons using the innate physical properties of materials compared to the options demonstrated with the conventional complementary metal-oxide-semiconductors (CMOS).

Keywords

Acknowledgement

This work has supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2022R1C1C1010071).

References

  1. D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, Adv. Electron. Mater., 2, 1600090 (2016). [DOI: https://doi.org/10.1002/AELM.201600090]
  2. S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N.C.P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi, and G. W. Burr, Nature, 558, 60 (2018). [DOI: https://doi.org/10.1038/s41586-018-0180-5]
  3. S. Oh, Y. Shi, J. Valle, P. Salev, Y. Lu, Z. Huang, Y. Kalcheim, I. Schuller, D. Kuzum, Nature Nanotechnology, 16, 680 (2021) [DOI: http://doi.org/10.1038/s41565-021-00874-8]
  4. Z. Wang, S. Joshi, S. Savel'ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J. H. Yoon, N. K. Upadhyay, J. Zhang, M. Hu, J. P. Strachan, M. Barnell, Q. Wu, H. Wu, R. S. Williams, Q. Xia, and J. J. Yang, Nat. Electron., 1, 137 (2018). [DOI: https://doi.org/10.1038/s41928-018-0023-2]
  5. P. Yao, H. Wu, B. Gao, S. B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng, L. Shi, H.S.P. Wong, and H. Qian, Nat. Commun., 8, 15199 (2017). [DOI: https://doi.org/10.1038/ncomms15199]
  6. M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. H. Weng, A. Wild, Y. Yang, and H. Wang, IEEE Micro, 38, 82 (2018). [DOI: https://doi.org/10.1109/MM.2018.112130359]
  7. G. Pedretti, V. Milo, S. Ambrogio, R. Carboni, S. Bianchi, A. Calderoni, N. Ramaswamy, A. S. Spinelli, and D. Ielmini, Sci. Rep., 7, 5288 (2017). [DOI: https://doi.org/10.1038/s41598-017-05480-0]
  8. J. Woo, T. V. Nguyen, J. H. Kim, J. P. Im, S. Im, Y. Kim, K. S. Min, and S. E. Moon, Sci. Rep., 10, 11703 (2020). [DOI: https://doi.org/10.1038/s41598-020-68547-5]
  9. D. H. Lim, S. Wu, R. Zhao, J. H. Lee, H. Jeong, and L. Shi, Nat. Commun., 12, 319 (2021). [DOI: https://doi.org/10.1038/s41467-020-20519-z]
  10. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nano Lett., 10, 1297 (2010). [DOI: https://doi.org/10.1021/nl904092h]
  11. D. Mehta, M. Rahman, K. Aono, and S. Chakrabartty, Nat. Commun., 13, 1670 (2022). [DOI: https://doi.org/10.1038/s41467-022-29320-6]
  12. W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. 1st ed. Chapter 2 (Cambridge University Press, UK, 2014).
  13. Z. Wang, M. Rao, J. W. Han, J. Zhang, P. Lin, Y. Li, C. Li, W. Song, S. Asapu, R. Midya, Y. Zhuo, H. Jiang, J. H. Yoon, N. K. Upadhyay, S. Joshi, M. Hu, J. P. Strachan, M. Barnell, Q. Wu, H. Wu, Q. Qiu, R. S. Williams, Q. Xia, and J. J. Yang, Nat. Commun., 9, 3208 (2018). [DOI: https://doi.org/10.1038/s41467-018-05677-5]
  14. D. Lee, M. Kwak, K. Moon, W. Choi, J. Park, J. Yoo, J. Song, S. Lim, C. Sung, W. Banerjee, and H. Hwang, Adv. Electron. Mater., 5, 1800866 (2019). [DOI: https://doi.org/10.1002/aelm.201800866]
  15. T. Tuma, A. Pantazi, M. L. Gallo, A. Sebastian, and E. Eleftheriou, Nat. Nanotechnol., 11, 693 (2016). [DOI: https://doi.org/10.1038/nnano.2016.70]
  16. R. Yang, H. M. Huang, and X. Guo, Adv. Electron. Mater., 5, 1900287 (2019). [DOI: https://doi.org/10.1002/aelm.201900287]
  17. R. Wang, J. Q. Yang, J. Y. Mao, Z. P. Wang, S. Wu, M. Zhou, T. Chen, Y. Zhou, and S. T. Han, Adv. Intell. Syst., 2, 2000055 (2020). [DOI: https://doi.org/10.1002/aisy.202000055]
  18. H. Lee, S. W. Cho, S. J. Kim, J. Lee, K. S. Kim, I. Kim, J. K. Park, J. Y. Kwak, J. Kim, J. Park, Y. J. Jeong, G. W. Hwang, K. S. Lee, D. Ielmini, and S. Lee, Nano Lett., 22, 733 (2022). [DOI: https://doi.org/10.1021/acs.nanolett.1c04125]
  19. E. Herrmann, A. Rush, T. Bailey, and R Jha, IEEE Electron Device Lett., 39, 500 (2018). [DOI: https://doi.org/10.1109/LED.2018.2806188]
  20. S. Choi, J. W. Choi, J. C. Kim, H. Y. Jeong, J. Shin, S. Jang, S. Ham, N. D. Kim, and G. Wang, Nano Energy, 84, 105947 (2021). [DOI: https://doi.org/10.1016/J.NANOEN.2021.105947]
  21. J. Yoo, J. Park, J. Song, S. Lim, and H. Hwang, Appl. Phys. Lett., 111, 063109 (2017). [DOI: https://doi.org/10.1063/1.4985165]
  22. Q. Hua, H. Wu, B. Gao, M. Zhao, Y. Li, X. Li, X. Hou, M.F.M. Chang, P. Zhou, H. Qian, Adv. Sci., 6, 1900024 (2019). [DOI: https://doi.org/10.1002/ADVS.201900024]
  23. H. Jiang, D. Belkin, S. E. Savel'ev, S. Lin, Z. Wang, Y. Li, S. Joshi, R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, and Q. Xia, Nat. Commun., 8, 882 (2017). [DOI: https://doi.org/10.1038/s41467-017-00869-x]
  24. C. Yoo, W. Kim, J. W. Jeon, E. S. Park, M. Ha, Y. K. Lee, and C. S. Hwang, ACS Appl. Mater. Interfaces, 12, 23110 (2020). [DOI: https://doi.org/10.1021/acsami.0c03747]
  25. W. Kim, S. Yoo, C. Yoo, E. S. Park, J. Jeon, Y. J. Kwon, K. S. Woo, H. J. Kim, Y. K. Lee, and C. S. Hwang, Nanotechnology, 29, 365202 (2018). [DOI: https://doi.org/10.1088/1361-6528/aacda0]
  26. D. Dev, A. Krishnaprasad, M. S. Shawkat, Z. He, S. Das, D. Fan, H. S. Chung, Y. Jung, and T. Roy, IEEE Electron Device Lett., 41, 936 (2020). [DOI: https://doi.org/10.1109/LED.2020.2988247]
  27. C. C. Chiang, V. Ostwal, P. Wu, C. S. Pang, F. Zhang, Z. Chen, and J. Appenzeller, Appl. Phys. Rev., 8, 021306 (2021). [DOI: https://doi.org/10.1063/5.0038013]
  28. Y. Shi, X. Liang, B. Yuan, V. Chen, H. Li, F. Hui, Z. Yu, F. Yuan, E. Pop, H.S.P. Wong, and M. Lanza, Nat. Electron., 1, 458 (2018). [DOI: https://doi.org/10.1038/s41928-018-0118-9]
  29. W. Yi, K. K. Tsang, S. K. Lam, X. Bai, J. A. Crowell, and E. A. Flores, Nat. Commun., 9, 4661 (2018). [DOI: https://doi.org/10.1038/s41467-018-07052-w]
  30. M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams, Nat. Mater., 12, 114 (2013). [DOI: https://doi.org/10.1038/nmat3510]
  31. M. L. Gallo and A. Sebastian, J. Phys. D: Appl. Phys., 53, 213002 (2020). [DOI: https://doi.org/10.1088/1361-6463/ab7794]
  32. T. Kaplan and D. Adler, Thermal, Appl. Phys. Lett., 19, 418 (2003). [DOI: https://doi.org/10.1063/1.1653754]
  33. N. F. Mott, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 24, 911 (2006). [DOI: https://doi. org/10.1080/14786437108217058]
  34. D. Adler, M. S. Shur, M. Silver, and S. R. Ovshinsky, J. Appl. Phys., 51, 3289 (2008). [DOI: https://doi.org/10.1063/1.328036]
  35. A. Cappelli, E. Piccinini, F. Xiong, A. Behnam, R. Brunetti, M. Rudan, E. Pop, and C. Jacoboni, Appl. Phys. Lett., 103, 083503 (2013). [DOI: https://doi.org/10.1063/1.4819097]
  36. D. Ielmini, Phys. Rev. B, 78, 035308 (2008). [DOI: https://doi.org/10.1103/PHYSREVB.78.035308]
  37. H. M. Huang, R. Yang, Z. H. Tan, H. K. He, W. Zhou, J. Xiong, and X. Guo, Adv. Mater., 31, 1803849 (2019). [DOI: https://doi.org/10.1002/adma.201803849]
  38. W. Xu, H. Cho, Y. H. Kim, Y. T. Kim, C. Wolf, C. G. Park, and T. W. Lee, Adv. Mater., 28, 5916 (2016). [DOI: https://doi.org/10.1002/adma.201506363]