DOI QR코드

DOI QR Code

3D-Printed Disease Models for Neurosurgical Planning, Simulation, and Training

  • Park, Chul-Kee (Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine)
  • 투고 : 2021.09.27
  • 심사 : 2021.11.17
  • 발행 : 2022.07.01

초록

Spatial insight into intracranial pathology and structure is important for neurosurgeons to perform safe and successful surgeries. Three-dimensional (3D) printing technology in the medical field has made it possible to produce intuitive models that can help with spatial perception. Recent advances in 3D-printed disease models have removed barriers to entering the clinical field and medical market, such as precision and texture reality, speed of production, and cost. The 3D-printed disease model is now ready to be actively applied to daily clinical practice in neurosurgical planning, simulation, and training. In this review, the development of 3D-printed neurosurgical disease models and their application are summarized and discussed.

키워드

과제정보

This work was supported by a Korea Medical Device Development Fund Grant funded by the Korean government (Ministry of Science and ICT; Ministry of Trade, Industry and Energy; Ministry of Health & Welfare; and Ministry of Food and Drug Safety) (project number : 202012E08). The photos of the 3D-printed disease model used in this paper were kindly provided by Pfs. In Sup Choi (Incheon Sejong Hospital, Incheon, Korea) and Sang Joon Park (MEDICALIP. Co. Ltd).

참고문헌

  1. Andereggen L, Gralla J, Andres RH, Weber S, Schroth G, Beck J, et al. : Stereolithographic models in the interdisciplinary planning of treatment for complex intracranial aneurysms. Acta Neurochir (Wien) 158 : 1711-1720, 2016 https://doi.org/10.1007/s00701-016-2892-3
  2. Bae JW, Lee DY, Pang CH, Kim JE, Park CK, Lee D, et al. : Clinical application of 3D virtual and printed models for cerebrovascular diseases. Clin Neurol Neurosurg 206 : 106719, 2021 https://doi.org/10.1016/j.clineuro.2021.106719
  3. Bairamian D, Liu S, Eftekhar B : Virtual reality angiogram vs 3-dimensional printed angiogram as an educational tool-a comparative study. Neurosurgery 85 : E343-E349, 2019 https://doi.org/10.1093/neuros/nyz003
  4. Blaszczyk M, Jabbar R, Szmyd B, Radek M : 3D printing of rapid, low-cost and patient-specific models of brain vasculature for use in preoperative planning in clipping of intracranial aneurysms. J Clin Med 10 : 1201, 2021 https://doi.org/10.3390/jcm10061201
  5. Bohl MA, Mauria R, Zhou JJ, Mooney MA, DiDomenico JD, McBryan S, et al. : The barrow biomimetic spine: face, content, and construct validity of a 3D-printed spine model for freehand and minimally invasive pedicle screw insertion. Global Spine J 9 : 635-641, 2019 https://doi.org/10.1177/2192568218824080
  6. Bortman J, Baribeau Y, Jeganathan J, Amador Y, Mahmood F, Shnider M, et al. : Improving clinical proficiency using a 3-dimensionally printed and patient-specific thoracic spine model as a haptic task trainer. Reg Anesth Pain Med 43 : 819-824, 2018
  7. Bow H, Zuckerman SL, Griffith B, Lewis S, McGruder C, Pruthi S, et al. : A 3D-printed simulator and teaching module for placing S2-alar iliac screws. Oper Neurosurg (Hagerstown) 18 : 339-346, 2020 https://doi.org/10.1093/ons/opz161
  8. Breimer GE, Haji FA, Bodani V, Cunningham MS, Lopez-Rios AL, Okrainec A, et al. : Simulation-based education for endoscopic third ventriculostomy: a comparison between virtual and physical training models. Oper Neurosurg (Hagerstown) 13 : 89-95, 2017 https://doi.org/10.1227/NEU.0000000000001317
  9. Burkhard M, Furnstahl P, Farshad M : Three-dimensionally printed vertebrae with different bone densities for surgical training. Eur Spine J 28 : 798-806, 2019 https://doi.org/10.1007/s00586-018-5847-y
  10. Byvaltsev V, Polkin R, Bereznyak D, Giers MB, Hernandez PA, Shepelev V, et al. : 3D-printed cranial models simulating operative field depth for microvascular training in neurosurgery. Surg Neurol Int 12 : 213, 2021 https://doi.org/10.25259/SNI_849_2020
  11. Chueh JY, Kuhn AL, Puri AS, Wilson SD, Wakhloo AK, Gounis MJ : Reduction in distal emboli with proximal flow control during mechanical thrombectomy: a quantitative in vitro study. Stroke 44 : 1396-1401, 2013 https://doi.org/10.1161/STROKEAHA.111.670463
  12. Chueh JY, Puri AS, Wakhloo AK, Gounis MJ : Risk of distal embolization with stent retriever thrombectomy and ADAPT. J Neurointerv Surg 8 : 197-202, 2016 https://doi.org/10.1136/neurintsurg-2014-011491
  13. Chueh JY, Wakhloo AK, Gounis MJ : Effectiveness of mechanical endovascular thrombectomy in a model system of cerebrovascular occlusion. AJNR Am J Neuroradiol 33 : 1998-2003, 2012 https://doi.org/10.3174/ajnr.A3103
  14. Clifton W, Damon A, Soares C, Nottmeier E, Pichelmann M : Investigation of a three-dimensional printed dynamic cervical spine model for anatomy and physiology education. Clin Anat 34 : 30-39, 2021 https://doi.org/10.1002/ca.23607
  15. Clifton W, Damon A, Stein R, Pichelmann M, Nottmeier E : Biomimetic 3-dimensional-printed posterior cervical laminectomy and fusion simulation: advancements in education tools for trainee instruction. World Neurosurg 135 : 308, 2020 https://doi.org/10.1016/j.wneu.2019.12.134
  16. Clifton W, Nottmeier E, Edwards S, Damon A, Dove C, Refaey K, et al. : Development of a novel 3D printed phantom for teaching neurosurgical trainees the freehand technique of C2 laminar screw placement. World Neurosurg 129 : e812-e820, 2019 https://doi.org/10.1016/j.wneu.2019.06.038
  17. Coelho G, Chaves TMF, Goes AF, Del Massa EC, Moraes O, Yoshida M : Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery. Childs Nerv Syst 34 : 749-756, 2018 https://doi.org/10.1007/s00381-017-3616-6
  18. Coelho G, Warf B, Lyra M, Zanon N : Anatomical pediatric model for craniosynostosis surgical training. Childs Nerv Syst 30 : 2009-2014, 2014 https://doi.org/10.1007/s00381-014-2537-x
  19. D'Urso PS, Askin G, Earwaker JS, Merry GS, Thompson RG, Barker TM, et al. : Spinal biomodeling. Spine (Phila Pa 1976) 24 : 1247-1251, 1999 https://doi.org/10.1097/00007632-199906150-00013
  20. D'Urso PS, Thompson RG, Atkinson RL, Weidmann MJ, Redmond MJ, Hall BI, et al. : Cerebrovascular biomodelling: a technical note. Surg Neurol 52 : 490-500, 1999 https://doi.org/10.1016/S0090-3019(99)00143-3
  21. Damon A, Clifton W, Valero-Moreno F, Quinones-Hinojosa A : Cost-effective method for 3-dimensional printing dynamic multiobject and patient-specific brain tumor models: technical note. World Neurosurg 140 : 173-179, 2020 https://doi.org/10.1016/j.wneu.2020.04.184
  22. Dho YS, Lee D, Ha T, Ji SY, Kim KM, Kang H, et al. : Clinical application of patient-specific 3D printing brain tumor model production system for neurosurgery. Sci Rep 11 : 7005, 2021 https://doi.org/10.1038/s41598-021-86546-y
  23. Dholakia RJ, Kappel AD, Pagano A, Woo HH, Lieber BB, Fiorella DJ, et al. : In vitro angiographic comparison of the flow-diversion performance of five neurovascular stents. Interv Neuroradiol 24 : 150-161, 2018 https://doi.org/10.1177/1591019917748317
  24. Dong M, Chen G, Li J, Qin K, Ding X, Peng C, et al. : Three-dimensional brain arteriovenous malformation models for clinical use and resident training. Medicine (Baltimore) 97 : e9516, 2018 https://doi.org/10.1097/md.0000000000009516
  25. Erbano BO, Opolski AC, Olandoski M, Foggiatto JA, Kubrusly LF, Dietz UA, et al. : Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms. Acta Cir Bras 28 : 756-761, 2013 https://doi.org/10.1590/S0102-86502013001100002
  26. Essayed WI, Unadkat P, Hosny A, Frisken S, Rassi MS, Mukundan S, et al. : 3D printing and intraoperative neuronavigation tailoring for skull base reconstruction after extended endoscopic endonasal surgery: proof of concept. J Neurosurg 130 : 248-255, 2018 https://doi.org/10.3171/2017.9.JNS171253
  27. Faraj MK, Hoz SS, Mohammad AJ : The use of three-dimensional anatomical patient-specific printed models in surgical clipping of intracranial aneurysm: a pilot study. Surg Neurol Int 11 : 381, 2020 https://doi.org/10.25259/SNI_361_2020
  28. Fiani B, Newhouse A, Cathel A, Sarhadi K, Soula M : Implications of 3-dimensional printed spinal implants on the outcomes in spine surgery. J Korean Neurosurg Soc 64 : 495-504, 2021 https://doi.org/10.3340/jkns.2020.0272
  29. Galvez M, Asahi T, Baar A, Carcuro G, Cuchacovich N, Fuentes JA, et al. : Use of three-dimensional printing in orthopaedic surgical planning. J Am Acad Orthop Surg Glob Res Rev 2 : e071, 2018
  30. Gargiulo P, Arnadottir I, Gislason M, Edmunds K, Olafsson I : New directions in 3D medical modeling: 3D-printing anatomy and functions in neurosurgical planning. J Healthc Eng 2017 : 1439643, 2017
  31. Ghizoni E, De Souza JPSAS, Raposo-Amaral CE, Denadai R, De Aquino HB, Raposo-Amaral CA, et al. : 3D-printed craniosynostosis model: new simulation surgical tool. World Neurosurg 109 : 356-361, 2018 https://doi.org/10.1016/j.wneu.2017.10.025
  32. Gholampour S, Bahmani M : Hydrodynamic comparison of shunt and endoscopic third ventriculostomy in adult hydrocephalus using in vitro models and fluid-structure interaction simulation. Comput Methods Programs Biomed 204 : 106049, 2021 https://doi.org/10.1016/j.cmpb.2021.106049
  33. Gomez-Feria J, Narros JL, Ciriza GG, Roldan-Lora F, Schrader IM, Martin-Rodriguez JF, et al. : 3D printing of diffuse low-grade gliomas involving eloquent cortical areas and subcortical functional pathways: technical note. World Neurosurg 147 : 164-171, 2021 https://doi.org/10.1016/j.wneu.2020.12.082
  34. Govsa F, Karakas AB, Ozer MA, Eraslan C : Development of life-size patient-specific 3D-printed dural venous models for preoperative planning. World Neurosurg 110 : e141-e149, 2018 https://doi.org/10.1016/j.wneu.2017.10.119
  35. Grau S, Kellermann S, Faust M, Perrech M, Beutner D, Drzezga A, et al. : Repair of cerebrospinal fluid leakage using a transfrontal, radial adipofascial flap: an individual approach supported by three-dimensional printing for surgical planning. World Neurosurg 110 : 315-318, 2018 https://doi.org/10.1016/j.wneu.2017.11.083
  36. Grosch AS, Schroder T, Schroder T, Onken J, Picht T : Development and initial evaluation of a novel simulation model for comprehensive brain tumor surgery training. Acta Neurochir (Wien) 162 : 1957-1965, 2020 https://doi.org/10.1007/s00701-020-04359-w
  37. Guo XY, He ZQ, Duan H, Lin FH, Zhang GH, Zhang XH, et al. : The utility of 3-dimensional-printed models for skull base meningioma surgery. Ann Transl Med 8 : 370, 2020 https://doi.org/10.21037/atm.2020.02.28
  38. Han M, Portnova AA, Lester M, Johnson M : A do-it-yourself 3D-printed thoracic spine model for anesthesia resident simulation. PLoS One 15 : e0228665, 2020 https://doi.org/10.1371/journal.pone.0228665
  39. Hao J, Nangunoori R, Wu YY, Rajaraman M, Cook D, Yu A, et al. : Material characterization and selection for 3D-printed spine models. 3D Print Med 4 : 8, 2018 https://doi.org/10.1186/s41205-018-0032-9
  40. Hicdonmez T, Parsak T, Cobanoglu S : Simulation of surgery for craniosynostosis: a training model in a fresh cadaveric sheep cranium. Technical note. J Neurosurg 105 (2 Suppl) : 150-152, 2006
  41. Hooten KG, Lister JR, Lombard G, Lizdas DE, Lampotang S, Rajon DA, et al. : Mixed reality ventriculostomy simulation: experience in neurosurgical residency. Neurosurgery 10 Suppl 4 : 576-581, 2014
  42. Hsieh TY, Cervenka B, Dedhia R, Strong EB, Steele T : Assessment of a patient-specific, 3-dimensionally printed endoscopic sinus and skull base surgical model. JAMA Otolaryngol Head Neck Surg 144 : 574-579, 2018 https://doi.org/10.1001/jamaoto.2018.0473
  43. Huang X, Liu Z, Wang X, Li XD, Cheng K, Zhou Y, et al. : A small 3D-printing model of macroadenomas for endoscopic endonasal surgery. Pituitary 22 : 46-53, 2019 https://doi.org/10.1007/s11102-018-0927-x
  44. Hull CW : The birth of 3D printing. Res Technol Manag 58 : 25-30, 2015
  45. Karlin L, Weinstock P, Hedequist D, Prabhu SP : The surgical treatment of spinal deformity in children with myelomeningocele: the role of personalized three-dimensional printed models. J Pediatr Orthop B 26 : 375-382, 2017 https://doi.org/10.1097/BPB.0000000000000411
  46. Khan IS, Kelly PD, Singer RJ : Prototyping of cerebral vasculature physical models. Surg Neurol Int 5 : 11, 2014 https://doi.org/10.4103/2152-7806.125858
  47. Kim GB, Lee S, Kim H, Yang DH, Kim YH, Kyung YS, et al. : Three-dimensional printing: basic principles and applications in medicine and radiology. Korean J Radiol 17 : 182-197, 2016 https://doi.org/10.3348/kjr.2016.17.2.182
  48. Kim MP, Ta AH, Ellsworth WA 4th, Marco RA, Gaur P, Miller JS : Three dimensional model for surgical planning in resection of thoracic tumors. Int J Surg Case Rep 16 : 127-129, 2015 https://doi.org/10.1016/j.ijscr.2015.09.037
  49. Kim PS, Choi CH, Han IH, Lee JH, Choi HJ, Lee JI : Obtaining informed consent using patient specific 3D printing cerebral aneurysm model. J Korean Neurosurg Soc 62 : 398-404, 2019 https://doi.org/10.3340/jkns.2019.0092
  50. Kimura T, Morita A, Nishimura K, Aiyama H, Itoh H, Fukaya S, et al. : Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery 65 : 719-725, 2009 https://doi.org/10.1227/01.NEU.0000354350.88899.07
  51. Kondo K, Harada N, Masuda H, Sugo N, Terazono S, Okonogi S, et al. : A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir (Wien) 158 : 1213-1219, 2016 https://doi.org/10.1007/s00701-016-2781-9
  52. Kondo K, Nemoto M, Harada N, Masuda H, Ando S, Kubota S, et al. : Three-dimensional printed model for surgical simulation of combined transpetrosal approach. World Neurosurg 127 : e609-e616, 2019 https://doi.org/10.1016/j.wneu.2019.03.219
  53. Kono K, Shintani A, Okada H, Terada T : Preoperative simulations of endovascular treatment for a cerebral aneurysm using a patient-specific vascular silicone model. Neurol Med Chir (Tokyo) 53 : 347-351, 2013 https://doi.org/10.2176/nmc.53.347
  54. Kosterhon M, Neufurth M, Neulen A, Schafer L, Conrad J, Kantelhardt SR, et al. : Multicolor 3D printing of complex intracranial tumors in neurosurgery. J Vis Exp, 2020 [Epub ahead of print]
  55. Lan Q, Chen A, Zhang T, Li G, Zhu Q, Fan X, et al. : Development of three-dimensional printed craniocerebral models for simulated neurosurgery. World Neurosurg 91 : 434-442, 2016 https://doi.org/10.1016/j.wneu.2016.04.069
  56. Lan Q, Zhu Q, Xu L, Xu T : Application of 3D-printed craniocerebral model in simulated surgery for complex intracranial lesions. World Neurosurg 134 : e761-e770, 2020 https://doi.org/10.1016/j.wneu.2019.10.191
  57. Leal A, Souza M, Nohama P : Additive manufacturing of 3D biomodels as adjuvant in intracranial aneurysm clipping. Artif Organs 43 : E9-E15, 2019 https://doi.org/10.1111/aor.13303
  58. Leal AG, Mori YT, Nohama P, De Souza MA : Three-dimensional hollow elastic models for intracranial aneurysm clipping election - a case study. Annu Int Conf IEEE Eng Med Biol Soc 2019 : 4137-4140, 2019
  59. Li C, Yang M, Xie Y, Chen Z, Wang C, Bai Y, et al. : Application of the polystyrene model made by 3-D printing rapid prototyping technology for operation planning in revision lumbar discectomy. J Orthop Sci 20 : 475-480, 2015 https://doi.org/10.1007/s00776-015-0706-8
  60. Liaw CY, Guvendiren M : Current and emerging applications of 3D printing in medicine. Biofabrication 9 : 024102, 2017 https://doi.org/10.1088/1758-5090/aa7279
  61. Licci M, Thieringer FM, Guzman R, Soleman J : Development and validation of a synthetic 3D-printed simulator for training in neuroendoscopic ventricular lesion removal. Neurosurg Focus 48 : E18, 2020
  62. Lin J, Zhou Z, Guan J, Zhu Y, Liu Y, Yang Z, et al. : Using three dimensional printing to create individualized cranial nerve models for skull base tumor surgery. World Neurosurg 120 : e142-e152, 2018 https://doi.org/10.1016/j.wneu.2018.07.236
  63. Lin QS, Lin YX, Wu XY, Yao PS, Chen P, Kang DZ : Utility of 3-dimensional-printed models in enhancing the learning curve of surgery of tuberculum sellae meningioma. World Neurosurg 113 : e222-e231, 2018 https://doi.org/10.1016/j.wneu.2018.01.215
  64. London NR Jr, Rangel GG, VanKoevering K, Zhang A, Powell AR, Prevedello DM, et al. : Simulation of pediatric anterior skull base anatomy using a 3D printed model. World Neurosurg 147 : e405-e410, 2021 https://doi.org/10.1016/j.wneu.2020.12.077
  65. Machi P, Jourdan F, Ambard D, Reynaud C, Lobotesis K, Sanchez M, et al. : Experimental evaluation of stent retrievers' mechanical properties and effectiveness. J Neurointerv Surg 9 : 257-263, 2017 https://doi.org/10.1136/neurintsurg-2015-012213
  66. Makris DN, Pappas EP, Zoros E, Papanikolaou N, Saenz DL, Kalaitzakis G, et al. : Characterization of a novel 3D printed patient specific phantom for quality assurance in cranial stereotactic radiosurgery applications. Phys Med Biol 64 : 105009, 2019 https://doi.org/10.1088/1361-6560/ab1758
  67. Mankovich NJ, Cheeseman AM, Stoker NG : The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging 3 : 200-203, 1990 https://doi.org/10.1007/BF03167610
  68. Mashiko T, Konno T, Kaneko N, Watanabe E : Training in brain retraction using a self-made three-dimensional model. World Neurosurg 84 : 585-590, 2015 https://doi.org/10.1016/j.wneu.2015.03.058
  69. Mashiko T, Otani K, Kawano R, Konno T, Kaneko N, Ito Y, et al. : Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg 83 : 351-361, 2015 https://doi.org/10.1016/j.wneu.2013.10.032
  70. Mokin M, Setlur Nagesh SV, Ionita CN, Mocco J, Siddiqui AH : Stent retriever thrombectomy with the cover accessory device versus proximal protection with a balloon guide catheter: in vitro stroke model comparison. J Neurointerv Surg 8 : 413-417, 2016 https://doi.org/10.1136/neurintsurg-2014-011617
  71. Mooney MA, Cavallo C, Zhou JJ, Bohl MA, Belykh E, Gandhi S, et al. : Three-dimensional printed models for lateral skull base surgical training: anatomy and simulation of the transtemporal approaches. Oper Neurosurg (Hagerstown) 18 : 193-201, 2020 https://doi.org/10.1093/ons/opz120
  72. Muller A, Krishnan KG, Uhl E, Mast G : The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg 14 : 899-914, 2003 https://doi.org/10.1097/00001665-200311000-00014
  73. Nagassa RG, McMenamin PG, Adams JW, Quayle MR, Rosenfeld JV : Advanced 3D printed model of middle cerebral artery aneurysms for neurosurgery simulation. 3D Print Med 5 : 11, 2019 https://doi.org/10.1186/s41205-019-0048-9
  74. Namba K, Higaki A, Kaneko N, Mashiko T, Nemoto S, Watanabe E : Microcatheter shaping for intracranial aneurysm coiling using the 3-dimensional printing rapid prototyping technology: preliminary result in the first 10 consecutive cases. World Neurosurg 84 : 178-186, 2015 https://doi.org/10.1016/j.wneu.2015.03.006
  75. Narayanan V, Narayanan P, Rajagopalan R, Karuppiah R, Rahman ZA, Wormald PJ, et al. : Endoscopic skull base training using 3D printed models with pre-existing pathology. Eur Arch Otorhinolaryngol 272 : 753-757, 2015 https://doi.org/10.1007/s00405-014-3300-3
  76. Oishi M, Fukuda M, Yajima N, Yoshida K, Takahashi M, Hiraishi T, et al. : Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors. J Neurosurg 119 : 94-105, 2013 https://doi.org/10.3171/2013.3.JNS121109
  77. Okonogi S, Kondo K, Harada N, Masuda H, Nemoto M, Sugo N : Operative simulation of anterior clinoidectomy using a rapid prototyping model molded by a three-dimensional printer. Acta Neurochir (Wien) 159 : 1619-1626, 2017 https://doi.org/10.1007/s00701-017-3202-4
  78. Panesar SS, Magnetta M, Mukherjee D, Abhinav K, Branstetter BF, Gardner PA, et al. : Patient-specific 3-dimensionally printed models for neurosurgical planning and education. Neurosurg Focus 47 : E12, 2019
  79. Park HJ, Wang C, Choi KH, Kim HN : Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training. J Orthop Surg Res 13 : 86, 2018 https://doi.org/10.1186/s13018-018-0788-z
  80. Ploch CC, Mansi CSSA, Jayamohan J, Kuhl E : Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning. World Neurosurg 90 : 668-674, 2016 https://doi.org/10.1016/j.wneu.2016.02.081
  81. Pucci JU, Christophe BR, Sisti JA, Connolly ES Jr : Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnol Adv 35 : 521-529, 2017 https://doi.org/10.1016/j.biotechadv.2017.05.007
  82. Ritacco LE, Di Lella F, Mancino A, Gonzalez Bernaldo de Quiros F, Boccio C, Milano FE : 3D printed models and navigation for skull base surgery: case report and virtual validation. Stud Health Technol Inform 216 : 1025, 2015
  83. Romero-Garcia R, Erez Y, Oliver G, Owen M, Merali S, Poologaindran A, et al. : Practical application of networks in neurosurgery: combined 3-dimensional printing, neuronavigation, and preoperative surgical planning. World Neurosurg 137 : e126-e137, 2020 https://doi.org/10.1016/j.wneu.2020.01.085
  84. Ryan JR, Almefty KK, Nakaji P, Frakes DH : Cerebral aneurysm clipping surgery simulation using patient-specific 3D printing and silicone casting. World Neurosurg 88 : 175-181, 2016 https://doi.org/10.1016/j.wneu.2015.12.102
  85. Ryan JR, Chen T, Nakaji P, Frakes DH, Gonzalez LF : Ventriculostomy simulation using patient-specific ventricular anatomy, 3D printing, and hydrogel casting. World Neurosur 84 : 1333-1339, 2015 https://doi.org/10.1016/j.wneu.2015.06.016
  86. Shah A, Jankharia B, Goel A : Three-dimensional model printing for surgery on arteriovenous malformations. Neurol India 65 : 1350-1354, 2017 https://doi.org/10.4103/0028-3886.217958
  87. Shah KJ, Peterson JC, Beahm DD, Camarata PJ, Chamoun RB : Three-dimensional printed model used to teach skull base anatomy through a transsphenoidal approach for neurosurgery residents. Oper Neurosurg (Hagerstown) 12 : 326-329, 2016 https://doi.org/10.1227/NEU.0000000000001127
  88. Shen Z, Xie Y, Shang X, Xiong G, Chen S, Yao Y, et al. : The manufacturing procedure of 3D printed models for endoscopic endonasal transsphenoidal pituitary surgery. Technol Health Care 28 : 131-150, 2020 https://doi.org/10.3233/THC-209014
  89. Stefan P, Pfandler M, Lazarovici M, Weigl M, Navab N, Euler E, et al. : Three-dimensional-printed computed tomography-based bone models for spine surgery simulation. Simul Healthc 15 : 61-66, 2020 https://doi.org/10.1097/sih.0000000000000417
  90. Sullivan S, Aguilar-Salinas P, Santos R, Beier AD, Hanel RA : Three-dimensional printing and neuroendovascular simulation for the treatment of a pediatric intracranial aneurysm: case report. J Neurosurg Pediatr 22 : 672-677, 2018 https://doi.org/10.3171/2018.6.PEDS17696
  91. Tai BL, Rooney D, Stephenson F, Liao PS, Sagher O, Shih AJ, et al. : Development of a 3D-printed external ventricular drain placement simulator: technical note. J Neurosurg 123 : 1070-1076, 2015 https://doi.org/10.3171/2014.12.JNS141867
  92. Tai BL, Wang AC, Joseph JR, Wang PI, Sullivan SE, McKean EL, et al. : A physical simulator for endoscopic endonasal drilling techniques: technical note. J Neurosurg 124 : 811-816 2016 https://doi.org/10.3171/2015.3.jns1552
  93. Thawani JP, Pisapia JM, Singh N, Petrov D, Schuster JM, Hurst RW, et al. : Three-dimensional printed modeling of an arteriovenous malformation including blood flow. World Neurosurg 90 : 675-683, 2016 https://doi.org/10.1016/j.wneu.2016.03.095
  94. Thawani JP, Singh N, Pisapia JM, Abdullah KG, Parker D, Pukenas BA, et al. : Three-dimensional printed modeling of diffuse low-grade gliomas and associated white matter tract anatomy. Neurosurgery 80 : 635-645, 2017 https://doi.org/10.1093/neuros/nyx009
  95. Umemura T, Nishizawa S, Miyachi H, Yamamoto J : Removal of double cavernous angioma of the frontal lobe using a three-dimensional printed model: a case report. J UOEH 42 : 217-222, 2020 https://doi.org/10.7888/juoeh.42.217
  96. Van Dijk M, Smit TH, Jiya TU, Wuisman PI : Polyurethane real-size models used in planning complex spinal surgery. Spine (Phila Pa 1976) 26 : 1920-1926, 2001 https://doi.org/10.1097/00007632-200109010-00020
  97. Wang JL, Yuan ZG, Qian GL, Bao WQ, Jin GL : 3D printing of intracranial aneurysm based on intracranial digital subtraction angiography and its clinical application. Medicine (Baltimore) 97 : e11103, 2018 https://doi.org/10.1097/md.0000000000011103
  98. Wang L, Ye X, Hao Q, Chen Y, Chen X, Wang H, et al. : Comparison of two three-dimensional printed models of complex intracranial aneurysms for surgical simulation. World Neurosurg 103 : 671-679, 2017 https://doi.org/10.1016/j.wneu.2017.04.098
  99. Wang L, Ye X, Hao Q, Ma L, Chen X, Wang H, et al. : Three-dimensional intracranial middle cerebral artery aneurysm models for aneurysm surgery and training. J Clin Neurosci 50 : 77-82, 2018 https://doi.org/10.1016/j.jocn.2018.01.074
  100. Waran V, Devaraj P, Hari Chandran T, Muthusamy KA, Rathinam AK, Balakrishnan YK, et al. : Three-dimensional anatomical accuracy of cranial models created by rapid prototyping techniques validated using a neuronavigation station. J Clin Neurosci 19 : 574-577, 2012 https://doi.org/10.1016/j.jocn.2011.07.031
  101. Waran V, Menon R, Pancharatnam D, Rathinam AK, Balakrishnan YK, Tung TS, et al. : The creation and verification of cranial models using three-dimensional rapid prototyping technology in field of transnasal sphenoid endoscopy. Am J Rhinol Allergy 26 : e132-e136, 2012 https://doi.org/10.2500/ajra.2012.26.3808
  102. Waran V, Narayanan V, Karuppiah R, Owen SL, Aziz T : Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J Neurosurg 120 : 489-492, 2014 https://doi.org/10.3171/2013.11.JNS131066
  103. Waran V, Narayanan V, Karuppiah R, Pancharatnam D, Chandran H, Raman R, et al. : Injecting realism in surgical training-initial simulation experience with custom 3D models. J Surg Educ 71 : 193-197, 2014 https://doi.org/10.1016/j.jsurg.2013.08.010
  104. Waran V, Narayanan V, Karuppiah R, Thambynayagam HC, Muthusamy KA, Rahman ZA, et al. : Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology. Simul Healthc 10 : 43-48, 2015 https://doi.org/10.1097/SIH.0000000000000060
  105. Waran V, Pancharatnam D, Thambinayagam HC, Raman R, Rathinam AK, Balakrishnan YK, et al. : The utilization of cranial models created using rapid prototyping techniques in the development of models for navigation training. J Neurol Surg A Cent Eur Neurosurg 75 : 12-15, 2014
  106. Weinstock P, Prabhu SP, Flynn K, Orbach DB, Smith E : Optimizing cerebrovascular surgical and endovascular procedures in children via personalized 3D printing. J Neurosurg Pediatr 16 : 584-589, 2015 https://doi.org/10.3171/2015.3.PEDS14677
  107. Weinstock P, Rehder R, Prabhu SP, Forbes PW, Roussin CJ, Cohen AR : Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects. J Neurosurg Pediatr 20 : 1-9, 2017 https://doi.org/10.3171/2017.1.PEDS16568
  108. Weiss MY, Melnyk R, Mix D, Ghazi A, Vates GE, Stone JJ : Design and validation of a cervical laminectomy simulator using 3D printing and hydrogel phantoms. Oper Neurosurg (Hagerstown) 18 : 202-208, 2020 https://doi.org/10.1093/ons/opz129
  109. Wen G, Cong Z, Liu K, Tang C, Zhong C, Li L, et al. : A practical 3D printed simulator for endoscopic endonasal transsphenoidal surgery to improve basic operational skills. Childs Nerv Syst 32 : 1109-1116, 2016 https://doi.org/10.1007/s00381-016-3051-0
  110. Wu AM, Wang K, Wang JS, Chen CH, Yang XD, Ni WF, et al. : The addition of 3D printed models to enhance the teaching and learning of bone spatial anatomy and fractures for undergraduate students: a randomized controlled study. Ann Transl Med 6 : 403, 2018 https://doi.org/10.21037/atm.2018.09.59
  111. Wu ZX, Huang LY, Sang HX, Ma ZS, Wan SY, Cui G, et al. : Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J Spinal Disord Tech 24 : 444-450, 2011 https://doi.org/10.1097/BSD.0b013e318201be2a
  112. Wurm G, Tomancok B, Pogady P, Holl K, Trenkler J : Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 100 : 139-145, 2004 https://doi.org/10.3171/jns.2004.100.1.0139
  113. Xu WH, Liu J, Li ML, Sun ZY, Chen J, Wu JH : 3D printing of intracranial artery stenosis based on the source images of magnetic resonance angiograph. Ann Transl Med 2 : 74, 2014
  114. Yang M, Li C, Li Y, Zhao Y, Wei X, Zhang G, et al. : Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine (Baltimore) 94 : e582, 2015 https://doi.org/10.1097/MD.0000000000000582
  115. Ye X, Wang L, Li K, Hao Q, Lu J, Chen X, et al. : A three-dimensional color-printed system allowing complete modeling of arteriovenous malformations for surgical simulations. J Clin Neurosci 77 : 134-141, 2020 https://doi.org/10.1016/j.jocn.2020.04.123
  116. Yi Z, He B, Liu Y, Huang S, Hong W : Development and evaluation of a craniocerebral model with tactile-realistic feature and intracranial pressure for neurosurgical training. J Neurointerv Surg 12 : 94-97, 2020 https://doi.org/10.1136/neurintsurg-2019-015008
  117. Zheng JP, Li CZ, Chen GQ : Multimaterial and multicolor 3D-printed model in training of transnasal endoscopic surgery for pituitary adenoma. Neurosurg Focus 47 : E21, 2019 https://doi.org/10.3171/2019.6.FOCUS19294
  118. Zheng JP, Li CZ, Chen GQ, Song GD, Zhang YZ : Three-dimensional printed skull base simulation for transnasal endoscopic surgical training. World Neurosurg 111 : e773-e782, 2018 https://doi.org/10.1016/j.wneu.2017.12.169
  119. Zheng W, Chen C, Zhang C, Tao Z, Cai L : The feasibility of 3D printing technology on the treatment of pilon fracture and its effect on doctor-patient communication. Biomed Res Int 2018 : 8054698, 2018
  120. Zhuang YD, Zhou MC, Liu SC, Wu JF, Wang R, Chen CM : Effectiveness of personalized 3D printed models for patient education in degenerative lumbar disease. Patient Educ Couns 102 : 1875-1881, 2019 https://doi.org/10.1016/j.pec.2019.05.006