DOI QR코드

DOI QR Code

Effect of rearing water temperature on growth and physiological response of juvenile chum salmon(Oncorhynchus keta)

사육 수온이 연어(Oncorhynchus keta) 치어의 성장 및 생리반응에 미치는 영향

  • Seok-Woo Jang (Inland Fisheries Industrial Research Institute of Chung Cheong Buk-do) ;
  • Han-Seung Kang (MS BioLab) ;
  • Dong-Yang Kang (Inland Fisheries Industrial Research Institute of Chung Cheong Buk-do) ;
  • Kyu-Seok Cho (Inland Fisheries Industrial Research Institute of Chung Cheong Buk-do)
  • 장석우 (충청북도내수면산업연구소) ;
  • 강한승 (엠에스바이오랩) ;
  • 강동양 (충청북도내수면산업연구소) ;
  • 조규석 (충청북도내수면산업연구소)
  • Received : 2022.12.02
  • Accepted : 2022.12.30
  • Published : 2022.12.31

Abstract

This study was conducted to investigate the effects of different water temperatures (8, 11, 14 and 17℃) on growth, survival and hematological parameters of juvenile chum salmon(Oncorhynchus keta) for eight weeks. At the end of the experiment, at 14℃, the final body weights of the O. keta group were the highest compared to the other groups. Also, the O. keta showed a higher tendency in the 14℃ group than the 8, 11, and 17℃ groups in terms of growth performances, including specific growth rate (SGR), feed conversion ratio (FCR), feed efficiency (FE), weight gain (WG), and condition factor (CF). The survival rate (SR) was 100% at 8 and 11℃ groups, 96% at 14℃ group and 98% at 17℃ group. In the plasma components, the alanine aminotransferase (ALT) was significantly decreased at 17℃ group, whereas there was no significant change in the albumin (ALB), total protein (TP), sodium (Na+), potassium (K+) and chloride (Cl-) levels. Among the whole-body composition of salmon, moisture, crude protein, and ash were not significantly affected by water temperature. However, crude lipid in the 8℃ group was significantly higher than in other water temperature groups. The results of this study demonstrated that the optimal temperature to stable growth performance for juvenile O. keta was 14℃.

본 연구는 연어(Oncorhynchus keta) 치어의 성장, 생존 및 혈액 성상에 미치는 사육수온(8, 11, 14 및 17℃)의 영향을 연구하기 위해 수행되었다. 실험 종료 시 연어의 체중(body weight, BW)은 14℃ 실험구에서 가장 높았을 뿐 아니라, 특이성장률(specific growth rate, SGR), 사료전환 효율(feed conversion ratio, FCR), 사료효율(feed efficiency, FE), 증중률(weight gain, WG) 및 비만도(condition factor, CF)와 같은 성장지표에서도 14℃ 실험구가 가장 높은 경향을 나타내었다. 생존율(survival rate)은 8℃와 11℃ 실험구에서 100%를 보였고, 14℃ 실험구에서는 96% 및 17℃ 실험구에서는 98%를 각각 나타내었다. 혈장 성분 중 알라닌 아미노전이효소(alanine aminotransferase, ALT)는 17℃ 실험구에서 유의한 감소를 보였으나, 알부민(albumin), 총단백질(total protein, TP), 나트륨(sodium, Na+), 칼륨(potassium, K+) 및 염소(chloride, Cl-)는 유의한 변화를 보이지 않았다. 실험 종료 시 연어의 체성분 조사를 실시한 결과, 수분(moisture), 단백질(crude protein) 및 회분량(crude ash)은 수온에 따른 유의한 변화는 보이지 않았으나, 지질(crude lipid)은 다른 실험구에 비해 8℃ 실험구에서 유의하게 높은 경향을 보였다. 결론적으로 연어 치어가 성장하는데 필요한 최적의 사육 수온은 14℃로 보이나, 혈액 성상 등 생리적인 영향은 향후 추가적인 연구가 필요한 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 충청북도내수면산업연구소의 연어 양식 연구과제(2022-103-0099-0287-00CF)의 지원을 받아 수행되었습니다.

References

  1. Barton BA and GK Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1:3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  2. Bentinck SJ, MH Beleau, P Waterstrat, CS Tucker, F Stiles, PR Bowser and LA Brown. 1987. Biochemical reference ranges for commercially reared channel catfish. Progress. Fish-Cult. 49:108-114. https://doi.org/10.1577/1548-8640(1987)49<108:BRRFCR>2.0.CO;2
  3. Berg A, T Hansen and S Stefansson. 1992. First feeding of Atlantic salmon (Salmo salar L.) under different photoperiods. J. Appl. Ichthyol. 8:251-256. https://doi.org/10.1111/j.1439-0426.1992.tb00691.x
  4. Burt JM, SG Hinch and DA Patterson. 2012. Parental identity influences progeny responses to incubation thermal stress in sockeye salmon Onchorhynchus nerka. J. Fish Biol. 80:444-462. https://doi.org/10.1111/j.1095-8649.2011.03190.x
  5. Byrne P, D Speare and HW Ferguson. 1989. Effects of a cationic detergent on the gills and blood chemistry of rainbow trout Salmo gairdneri. Dis. Aquat. Org. 6:185-196. https://doi.org/10.3354/dao006185
  6. Caissie D. 2006. The thermal regime of rivers: a review. Freshw. Biol. 51:1389-1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x
  7. Chapple JP, GR Smerdon, RJ Berry and AJS Hawkins. 1998. Seasonal changes in stress-70 protein levels reflect thermal tolerance in the marine bivalve Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 229:53-68. https://doi.org/10.1016/S0022-0981(98)00040-9
  8. Couto A, P Enes, H Peres and A Oliva-Teles. 2008. Effect of water temperature and dietary starch on growth and metabolic utilization of diets in gilthead sea bream (Sparus aurata) juvenile. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 151:45-50. https://doi.org/10.1016/j.cbpa.2008.05.013
  9. Crossin GT, SG Hinch, SJ Cooke, DW Welsh, DA Patterson, SRM Jones, AG Lotto, RA Leggatt, MT Mathes, JM Shrimpton, G van der Kraak and AP Farrel. 2008. Exposure to high temperature influences the behaviour, physiology, and survival of sockeye salmon during spawning migration. Can. J. Zool. 86:127-140. https://doi.org/10.1139/Z07-12
  10. Elliott JM and JA Elliott. 2010. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change. J. Fish Biol. 77:793-1817. https://doi.org/10.1111/j.1095-8649.2010.02762.x
  11. Ferrer M, JA Amat and J Vinuela. 1994. Daily variations of blood chemistry values in the chinstrap penguin(Pygoscelis antarctica) during the Antarctic summer. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 107:81-84. https://doi.org/10.1016/0300-9629(94)90277-1
  12. Flecker AS, PB McIntyre, JW Moore, JT Anderson, BW Taylor and Jr RO Hall. 2010. Migratory fishes as material and process subsidies in riverine ecosystem. pp. 559-592. In: American Fisheries Society Symposium. American Fisheries Society.
  13. Gende SM, TP Quinn, MF Willson, R Heintz and TM Scott. 2004. Magnitude and fate of salmon-derived nutrients and energy in a coastal stream ecosystem. J. Freshw. Ecol. 19:149-160. https://doi.org/10.1080/02705060.2004.9664522
  14. Handeland SO, AK Imsland and SO Stefansson. 2008. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 283:36-42. https://doi.org/10.1016/j.aquaculture.2008.06.042
  15. Haney DC, DA Hursh, MC Mix and JR Winton. 1992. Physiological and haematological changes in chum salmon artificially infected with erythrocytic necrosis virus. J. Aquat. Anim. Health 4:48-57. https://doi.org/10.1577/1548-8667(1992)004<0048:PAHCIC>2.3.CO;2
  16. Hevroy EM, R Waagbo, BE Torstensen, H Takle, I Stubhaug, SM Jorgensen, T Torgersen, L Tvenning, S Susort, O Breck and T Hansen. 2012. Ghrelin is involved in voluntary anorexia in Atlantic salmon raised at elevated sea temperatures. Gen. Comp. Endocrinol. 175:118-134. https://doi.org/10.1016/j.ygcen.2011.10.007
  17. Hvas M, O Folkedal, A Imsland and F Oppedal. 2018. Metabolic rates, swimming capabilities, thermal niche and stress response of the lumpfish, Cyclopterus lumpus. Biol. Open 7:bio036079. https://doi.org/10.1242/bio.036079
  18. Jeon JK, PK Kim, YJ Park and HT Huh. 1995. Study of serum constituents in several species of cultured fish. Korean J. Fish. Aquatic. Sci. 28:123-130.
  19. Jonsson B and N Jonsson. 2003. Migratory Atlantic salmon as vectors for the transfer of energy and nutrients between freshwater and marine environments. Freshw. Biol. 48:21-27. https://doi.org/10.1046/j.1365-2427.2003.00964.x
  20. Kang DY, HK Han and CY Jun. 2004. Influence of water temperature on growth of yearling sea bass, Lateolabrax japonicus in indoor tank. J. Aquacult. 17:240-245.
  21. Karabulut HA, I Yandi and NM Aras. 2010. Effects of different feed and temperature conditions on growth, meat yield, survival rate, feed conversion ratio and condition factor in rainbow trout (Oncorhynchus mykiss) fingerlings. J. Anim. Vet. Adv. 9:2818-2823. https://doi.org/10.3923/javaa.2010.2818.2823
  22. Kim JH, S Sohn, SK Kim and YB Hur. 2020. Effects on hematological parameters, antioxidant and immune responses, AChE, and stress indicators of olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater challenged by Edwardsiella tarda. Fish Shellfish Immunol. 97:194-203. https://doi.org/10.1016/j.fsi.2019.12.011
  23. Kovach RP, JE Joyce, JD Echave, MS Lindberg and DA Tallmon. 2013. Earlier migration timing, decreasing phenotypic variation, and biochmplexity in multiple salmonid species. PLoS One 8:e53807. https://doi.org/10.1371/journal.pone.0053807
  24. Lee JH, H Han, JY Lee, YS Cha and SJ Cho. 2022. Ecological health assessment of Yangjaecheon and Yeouicheon using biotic index and water quality. Korean J. Environ. Biol. 40:172-186. https://doi.org/10.11626/KJEB.2022.40.2.172
  25. Lee KW, GS Han, HJ Lim and SG Byun. 2021. Influence of water temperature on growth of juvenile starry flounder(Platichthys stellatus). J. Fish. Mar. Sci. Edu. 33:515-524. https://doi.org/10.13000/JFMSE.2021.4.33.2.515
  26. Malarvizhi A, C Kavitha, M Saravanan and M Ramesh. 2012. Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. J. King Saud Univ.-Sci. 24:179-186. https://doi.org/10.1016/j.jksus.2011.01.001
  27. McCormick SD, RA Cunjak, B Dempson, MF O'Dea and JB Carey. 1999. Temperature-related loss of smolt characteristics in Atlantic salmon (Salmo salar) in the wild. Can. J. Fish. Aquat. Sci. 56:1649-1658. https://doi.org/10.1139/f99-099
  28. Mizanur RM, HH Yun, M Moniruzzaman, F Ferreira, KW Kim and SC Bai. 2014. Effects of feeding rate and water temperature on growth and body composion of juvenile Korean rockfish Sebastes schlegeli (Hilgendorf 1880). Asian Australas. J. Anim. Sci. 27:690-699. https://doi.org/10.5713/ajas.2013.13508
  29. Morita K and A Nakashima. 2015. Temperature seasonality during fry out-migration influences the survival of hatchery-reared chum salmon Oncorhynchus keta. J. Fish Biol. 87:1111-1117. https://doi.org/10.1111/jfb.12767
  30. Norris AL, DS Houser and DE Crocker. 2010. Environment and activity affect skin temperature in breeding adult male elephant seals (Mirounga angustirostris). J. Exp. Biol. 213:4205-4212. https://doi.org/10.1242/jeb.042135
  31. Pavlosky KK, Y Yamaguchi, DT Lerner and AP Seale. 2019. The effects of transfer from steady-state to tidally-changing salinities on plasma and branchial osmoregulatory variables in adult Mozambique tilapia. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 227:134-145. https://doi.org/10.1016/j.cbpa.2018.10.005
  32. Pickering AD. 1992. Rainbow trout husbandry: management of the stress response. Aquaculture 100:125-139. https://doi.org/10.1016/0044-8486(92)90354-N
  33. Pillay TVR and MN Kutty. 2005. Aquaculture, Principles and Practices. Blackwell Publishing. Oxford. pp. 145-146.
  34. Quinn NL, CR McGowan, GA Cooper, BF Koop and WS Davidson. 2011. Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress. Physiol. Genomics 43:685-696. https://doi.org/10.1152/physiolgenomics.00008.2011
  35. Ramesh M, S Anitha, RK Poopal and C Shobana. 2018. Evaluation of acute and sublethal effects of chloroquine(C18H26CIN3) on certain enzymological and histopathological biomarker responses of a freshwater fish Cyprinus carpio. Toxicol. Rep. 5:18-27. https://doi.org/10.1016/j.toxrep.2017.11.006
  36. Robb DHF, SC Kestin, PD Warriss and GR Nute. 2002. Muscle lipid content determines the eating quality of smoked and cooked Atlantic salmon (Salmo salar). Aquaculture 205:345-358. https://doi.org/10.1016/S0044-8486(01)00710-4
  37. Ryan SN. 1995. The effect of chronic heat stress on cortisol levels in the Antartic fish Pagothenia borchgrevinki. Experientia 51:768-774. https://doi.org/10.1007/BF01922428
  38. Sampaio E, AR Lopes, S Francisco, JR Paula, M Pimentel, AL Maulvault, T Repolho, TF Grilo, P Pousao-Ferreira, A Marques and R Rosa. 2017. Ocean acidification dampens physiological stress response to warming and contamination in a commercially important fish (Argyrosomus regius). Sci. Total Environ. 618:388-398. https://doi.org/10.5194/bg-2017-147
  39. Simpkins DG, WA Hubert, DR Martinez and DC Rule. 2003. Interacting effects of water temperature and swimming activity on body composition and mortality of fasted juvenile rainbow trout. Can. J. Zool. 81:1641-1649. https://doi.org/10.1139/z03-157
  40. Singh RK, AS Desai, PA Chavan and PA Khandagale. 2009. Effect of water temperature on dietary protein requirement, growth and body composition of Asian catfish, Clarias batrachus fry. J. Therm. Biol. 34:8-13. https://doi.org/10.1016/j.jtherbio.2008.08.005
  41. Somero GN. 2004. Adaptation of enzymes to temperature: searching for basic "strategies". Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 139:321-333. https://doi.org/10.1016/j.cbpc.2004.05.003
  42. Somero GN. 2010. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'. J. Exp. Biol. 213:912-930. https://doi.org/10.1242/jeb.037473
  43. Strange RJ, CB Schreck and JT Golden. 1977. Corticoid stress responses to handling and temperature in salmonids. Trans. Am. Fish. Soc. 106:213-218. https://doi.org/10.1577/1548-8659(1977)106<213:CSRTHA>2.0.CO;2
  44. Swansburg E, G Chaput, D Moore, D Caissie and N El-Jabi. 2005. Size variability of juvenile Atlantic salmon: links to environmental conditions. J. Fish Biol. 61:661-683. https://doi.org/10.1111/j.1095-8649.2002.tb00903.x
  45. Tidwel JH, SD Cole, LA Bright, AV Arnum and D Asharian. 2007. Effect of water temperature on growth, survival and biochemical composition of largemouth bass, Micropterus salmoides. J. World Aquacult. Soc. 34:175-183. https://doi.org/10.1111/j.1749-7345.2003.tb00054.x
  46. Wang Y, L Li, M Hu and W Lu. 2015. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidification and thermal stress. Sci. Total Environ. 514:261-272. https://doi/org/10.1016/j.scitotenv.2015.01.092
  47. Yamawaki K, W Hashimoto, K Fujii, J Koyama, Y Ikeda and H Ozaki. 1986. Hemochemical changes in carp exposed to low cadmium concentration. Nippon Suisan Gakkaishi 52:459-466. https://doi.org/10.2331/suisan.52.459
  48. Yanagisawa T and K Hashimoto. 1984. Plasma albumins in elasmobranchs. Bull. Japan Soc. Sci. Fish. 50:1083.
  49. Yeo IK and MK Choe. 1998. Effects of starvation and feeding frequency on growth of juvenile Chum Salmon Oncorhynchus keta. J. Aquacult. 11:363-369.
  50. Yoon SJ and JH Park. 2022. Behavioral responses and tolerance limits of wild goldeye rockfish Sebastes thompsoni to high temperature exposure. Korean J. Environ. Biol. 40:247-254. https://doi.org/10.11626/KJEB.2022.40.3.247