DOI QR코드

DOI QR Code

SSP 시나리오에 따른 국내 용재수종의 서식지 적합도 평가

Assessing habitat suitability for timber species in South Korea under SSP scenarios

  • 안현권 (국민대학교 산림환경시스템학과) ;
  • 임철희 (국민대학교 교양대학)
  • Hyeon-Gwan Ahn (Department of Forestry, Enviroment, and Systems, Kookmin University) ;
  • Chul-Hee Lim (College of General Education, Kookmin University)
  • 투고 : 2022.11.09
  • 심사 : 2022.12.21
  • 발행 : 2022.12.31

초록

본 연구는 국내 주요 용재수종인 잣나무와 삼나무, 편백에 대한 종 분포 예측 모델의 결과를 앙상블하여 기후 시나리오에 따라 현재, 근미래, 먼미래의 서식 적합지를 예측하였고 잣나무와 삼나무, 편백의 기후변화 시나리오별 분포 적합지를 분석하였다. 특히, 잣나무를 삼나무와 편백이 대체할 수 있는지 평가하였다. 기준연도(현재) 잣나무의 매우 적합한 서식지는 전국의 약 13.87%를 차지하지만 SSP5-8.5 하의 먼미래에서는 약 0.11%까지 낮아진다. 삼나무의 경우 기준연도의 서식 적합지는 약 7.08%이며 SSP5-8.5하의 먼미래에서는 약 18.21%까지 증가한다. 편백의 경우 기준연도의 서식 적합지는 약 19.32%이며 SSP5-8.5 하의 먼미래에서는 약 90.93%까지 차지하는 것으로 예측되었다. 전국적으로 조림하던 잣나무는 기후변화의 영향으로 서식처가 점차 북상하여 우리나라에서 적합한 서식처가 크게 감소하였으므로 21세기 중반 이후에는 국내에서 용재수종으로 조림하기에는 부적합하며 높은 수준의 서식 적합도를 갖는 편백이나 삼나무로 대체될 필요가 있다고 전망된다. 특히, 편백은 대부분의 영역에서 잣나무를 대체 가능하며, 삼나무의 경우 남해안과 중부지방 일부분을 대체할 수 있다고 평가되었다. 결론적으로 미래에는 조림하는 용재수종의 변화가 생길 것이며 다양한 수종을 대상으로 한 연구를 통해 기후변화에 대응하는 방안이 마련되기를 기대한다.

Various social and environmental problems have recently emerged due to global climate change. In South Korea, coniferous forests in the highlands are decreasing due to climate change whereas the distribution of subtropical species is gradually increasing. This study aims to respond to changes in the distribution of forest species in South Korea due to climate change. This study predicts changes in future suitable areas for Pinus koraiensis, Cryptomeria japonica, and Chamaecyparis obtusa cultivated as timber species based on climate, topography, and environment. Appearance coordinates were collected only for natural forests in consideration of climate suitability in the National Forest Inventory. Future climate data used the SSP scenario by KMA. Species distribution models were ensembled to predict future suitable habitat areas for the base year(2000-2019), near future(2041-2060), and distant future(2081-2100). In the baseline period, the highly suitable habitat for Pinus koraiensis accounted for approximately 13.87% of the country. However, in the distant future(2081-2100), it decreased to approximately 0.11% under SSP5-8.5. For Cryptomeria japonica, the habitat for the base year was approximately 7.08%. It increased to approximately 18.21% under SSP5-8.5 in the distant future. In the case of Chamaecyparis obtusa, the habitat for the base year was approximately 19.32%. It increased to approximately 90.93% under SSP5-8.5 in the distant future. Pinus koraiensis, which had been planted nationwide, gradually moved north due to climate change with suitable habitats in South Korea decreased significantly. After the near future, Pinus koraiensis was not suitable for the afforestation as timber species in South Korea. Chamaecyparis obtusa can be replaced in most areas. In the case of Cryptomeria japonica, it was assessed that it could replace part of the south and central region.

키워드

과제정보

본 연구는 한국연구재단 이공분야기초연구사업(우수신진연구) (과제번호: 2022R1C1C1008489)의 지원과 국민대학교의 학술지원을 받아 수행되었습니다.

참고문헌

  1. Ahn BI, EK Kim, HH Kim and DH Kim. 2009. Analysis of the effects of climate change on the domestic wood market. J. Rural Develop. 32:109-131.
  2. Chun JH, CB Lee and SJ Yun. 2015. Effects of climate change on the geographic distribution of Quercus acuta Thunb. J. Agric. Life Sci. 49:47-57. https://doi.org/10.14397/jals.2015.49.6.47
  3. Chun JH, MY Shin, TS Kwon, JH Lim, YG Lee, GE Park, TW Kim and JH Sung. 2014. Predicting the Changes of Productive Areas for Major Tree Species under Climate Change in Korea. Korea Forest Research Institute. Seoul.
  4. Cui G, H Kwak, S Choi, M Kim, CH Lim, WK Lee, JS Kim and Y Chae. 2016. Assessing vulnerability of forests to climate change in South Korea. J. For. Res. 27:489-503. https://doi.org/10.1007/s11676-015-0201-2
  5. IPCC. 2018. Summary for policymakers. p. 32. In: Global Warming of 1.5℃. World Meteorological Organization, Intergovernmental Panel on Climate Change. Geneva, Switzerland.
  6. IPCC. 2021. Summary for policymakers. p. 3. In: Climate Change 2021: The Physical Science Basis. Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge.
  7. Joung YW, YM Kim and YA Jang. 2020. Studies on the antioxidant and whitening effects of Chamaecyparis obtusa Extract. J. Korean Appl. Sci. Technol. 37:1496-1506. https://doi.org/10.12925/jkocs.2020.37.6.1496
  8. Khan S and S Verma. 2022. Ensemble modeling to predict the impact of future climate change on the global distribution of Olea europaea subsp. cuspidata. Front. For. Glob. Change 5:977691.
  9. Kim HC, SS Oh, YC Song and YJ Kim. 2013. Distribution characteristics of phytoncide in Jeolmul Natural Recreation Forest of Jeju. J. Naturopathy 2:89-98. https://doi.org/10.3389/ffgc.2022.977691
  10. Kim SH, SY Lee, SM Cho, CY Hong, SY Park, MJ Park and IG Choi. 2017. Antioxidant activities of Cryptomeria japonica leaves extracts by extraction methods. J. Korean Wood Sci. Technol. 45:495-510.
  11. KMA. 2021. Climate Change Outlook for Korean Peninsula 2020. Korea Meteorological Administration. Seoul.
  12. KFS. 2021. Statistical Yearbook of Forestry. Korea Forest Service. Daejoen, Korea.
  13. Lee MK, JH Chun and CB Lee. 2021. Prediction of distribution changes of Carpinus laxiflora and C. tschonoskii based on climate change scenarios using MaxEnt model. Korean J. Agric. For. Meteorol. 23:55-67. https://doi.org/10.5532/KJAFM.2021.23.1.55
  14. Lee MY, YE Kim, JS Hong and KJ Jo. 2021. A stratified random sampling design for paddy fields: Optimized stratification and sample allocation for effective spatial modeling and mapping of the impact of climate changes on agricultural system in Korea. Korean J. Environ. Biol. 39:526-535. https://doi.org/10.11626/KJEB.2021.39.4.526
  15. Lee YH, CS Na, SH Hong, SI Sohn, CS Kim, IY Lee and YJ Oh. 2018. Predicting the potential habitat and risk assessment of Amaranthus patulus using MaxEnt. Korean J. Environ. Biol. 36:672-679. https://doi.org/10.11626/KJEB.2018.36.4.672
  16. Li Y, M Li, C Li and Z Liu. 2020. Optimized Maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests 11:302. https://doi.org/10.3390/f11030302
  17. Lim CH, S Yoo, Y Choi, SW Jeon, Y Son and WK Lee. 2018. Assessing climate change impact on forest habitat suitability and diversity in the Korean Peninsula. Forests 9:259. https://doi.org/10.3390/f9050259
  18. Lim CH, YS Kim, M Won, SJ Kim and WK Lee. 2019. Can satellite-based data substitute for surveyed data to predict the spatial probability of forest fire? A geostatistical approach to forest fire in the Republic of Korea. Geomat. Nat. Hazards Risk 10:719-739. https://doi.org/10.1080/19475705.2018.1543210
  19. Lim CH and HJ Kim. 2020. Machine learning application for identifying habitat suitability changes of indicator tree species against recent climate change. J. Clim. Chang. Res. 11:793-805. https://doi.org/793-805.10.15531/ksccr.2020.11.6.793
  20. Lim CH and HA Choi. 2021. Ecosystem service-based economic valuation of forest restoration in North Korea. Korean J. Environ. Biol. 39:225-235. https://doi.org/10.11626/KJEB.2021.39.2.225
  21. Lim CH and HJ Kim. 2022. Can forest-related adaptive capacity reduce landslide risk attributable to climate change? - Case of Republic of Korea. Forests 13:49. https://doi.org/10.3390/f13010049
  22. Lim JH, JH Chun, KE Park and MY Shin. 2016. Effect of climate change on the tree-ring growth of Pinus koraiensis in Korea. J. Korean Soc. For. Sci. 105: 351-359. https://doi.org/10.14578/JKFS.2016.105.3.351
  23. Noce S, A Collalti and M Santini. 2017. Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe. Ecol. Evol. 7:9358-9375. https://doi.org/10.1002/ece3.3427
  24. Park HC, HL Jung and GG Lee. 2014. Predicting the suitable habitat of the Pinus pumila under climate change. J. Environ. Impact Assess. 23:380-393
  25. Park J, IW Jung, H Chang and DH Jang. 2012. Relationship between population and changes in warmth and coldness indices in South Korea. J. Clim. Res. 7:210-225.
  26. Park SU, KA Koo, C Seo and WS Kong. 2016. Potential impact of climate change on distribution of Hedera rhombea in the Korean Peninsula. J. Clim. Chang. Res. 7:325-334. https://doi.org/10.15531/ksccr.2016.7.3.325
  27. Seo CW, YR Park and YS Choi. 2008. Comparison of species distribution models according to location data. J. Korean Soc. Geospatial Inform. Sci. 16:59-64.
  28. Yoo SM, CH Lim, MI Kim, CH Song, SJ Kim and WK Lee. 2020. Potential Distribution of Endangered Coniferous Tree Species under Climate Change. J. Clim. Chang. Res. 11:215-226. https://doi.org/10.15531/ksccr.2020.11.4.215
  29. Yoon KB, SY Kim, SW Cheong, JH Lee, JH Tho and SH Han. 2022. Developing system of forest habitat quality assessment for endangered species. Korean J. Environ. Biol. 40:307-315. https://doi.org/10.11626/KJEB.2022.40.3.307
  30. Zhang X, J Chen, AC Dias and H Yang. 2020. Improving carbon stock estimates for in-use harvested wood products by linking production and consumption - a global case study. Environ. Sci. Technol. 54:2565-2574. https://doi.org/10.1021/acs.est.9b05721