References
- Browder, F.E, Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Natl. Acad. Sci. USA. 43 (1965), 1272-1276. https://doi.org/10.1073/pnas.53.6.1272
- Browder, F.E, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sei. U.S.A. 54 (1965), 1041-1044. https://doi.org/10.1073/pnas.54.4.1041
- Fisher, B, A fixed point theorem for compact metric space, Publ. Inst. Math. 25 (1976),193-194.
- Gohde, D, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258. https://doi.org/10.1002/mana.19650300312
- Kannan, R, Some results on fixed point theorems, Bull. Calcutta. Math. Soc. 60 (1969), 71-78.
- Kaplansky, I, Modules over operator algebras, Amer. J. Math. 75 (4) (1953), 839-853. https://doi.org/10.2307/2372552
- Kirk, W.A, A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly. 72 (1965), 1004-1006. https://doi.org/10.2307/2313345
- Koparde, P.V. and Waghmode, B.B, Kannan type mappings in Hilbert spaces, Scientist Phyl. Sciences 3 (1) (1991), 45-50.
- Lance, E.C, Hilbert C*-modules, A toolkit for operator algebraists, Cambridge Univ. Press, Cambridge 1995.
- Phillips, N.C. and Weaver, N, Modules with norms which take values in a C*-algebra, Pacific J. of Maths, 185 (1) (1998), 163-181. https://doi.org/10.2140/pjm.1998.185.163
- Sharma, A.K., Badshah, V.H and Gupta, V.K, Common fixed point theorems in Hilbert space, International Academy of Sciences, Engg. And Tech. 3 (2014), 63-70.