DOI QR코드

DOI QR Code

Effect of Culture Media on Production of Biomass, Fatty Acid, and Carotenoid in a Newly Isolated Mychonastes sp.

신규 분리된 Mychonastes sp.의 생장, 지방산 및 색소 생산에 생장배지가 미치는 영향

  • Yim, Kyung June (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Jang, Hyun-Jin (Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Yeji (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Nam, Seung Won (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Hwang, Byung Su (Plant Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Jung, Ji Young (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Lee, Chang Soo (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Kim, Z-Hun (Microbial Research Department, Nakdonggang National Institute of Biological Resources)
  • 임경준 (국립낙동강생물자원관 미생물연구실) ;
  • 장현진 (한국생명공학연구원 유전자교정연구센터) ;
  • 박예지 (국립낙동강생물자원관 미생물연구실) ;
  • 남승원 (국립낙동강생물자원관 미생물연구실) ;
  • 황병수 (국립낙동강생물자원관 동식물연구실) ;
  • 정지영 (국립낙동강생물자원관 미생물연구실) ;
  • 이창수 (국립낙동강생물자원관 미생물연구실) ;
  • 김지훈 (국립낙동강생물자원관 미생물연구실)
  • Received : 2021.12.13
  • Accepted : 2022.01.04
  • Published : 2022.06.30

Abstract

This study examined the growth, fatty acid (FA) content, and carotenoids of a newly isolated freshwater microalga, Mychonastes sp. 246, in various culture media. The appropriate temperature and light intensity for culturing Mychonastes sp. 246 were determined as 18℃-22℃ and 200-250 µmol/m2/s using a high throughput photobioreactor. The microalgal cells were cultivated in 0.5 L bubble column photobioreactors using BG11, Bold's Basal media, and f/2 media. According to the growth results of the microalgae, BG11, among the tested media, showed the highest biomass concentrations (3.5 ± 0.1 g/L in 10 d). To enhance the biomass growth of the microalgae, the N:P ratio in BG11 was manipulated from 45:1 to 7:1 based on the stoichiometric cell composition. The biomass concentrations of Mychonastes sp. 246 grown on the manipulated BG11 (MBG) increased to 38% (4.6 ± 0.3 g/L in d) compared with the original BG11 (3.3 g/L). The FA content of the microalgae grown on the MBG was lower (8.4%) than that of the original BG11 (10.1%) while the FA compositions did not exhibit any significant differences. Furthermore, three kinds of carotenoids were identified in Mychonastes sp. 246, zeaxanthin, lutein, and β-carotene. These results suggest an effective strategy for increasing biomass concentrations, FA content, and carotenoids of microalgae by performing a simple N:P adjustment in the culture media.

Keywords

Acknowledgement

이 연구는 환경부의 재원으로 국립낙동강생물자원관에서 지원을 받아 수행된 연구입니다(NNIBR202202109).

References

  1. Benemann, J. R. 1997. CO2 mitigation with microalgae systems. Energ. Convers. Manage. 38, S475-S479. https://doi.org/10.1016/S0196-8904(96)00313-5
  2. Wang, B., Y. Li, N. Wu, CQ, Lan. 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79, 707-718. https://doi.org/10.1007/s00253-008-1518-y
  3. Joe, H., D.-H. Kim, D.-S. Choi, and S. Bai. 2018. Optimization of phototrophic growth and lipid production of a newly isolated microalga, Desmodesmus sp. KAERI-NJ 5. Microbiol. Biotechnol. Lett. 46, 377-389. https://doi.org/10.4014/mbl.1808.08003
  4. Mahdieh, M., S. Shabani, and M. R. Amirjani. 2019. Characterization of the growth, total lipid and fatty acid profiles in microalga, Nannochloropsis oceanica under different nitrogen sources. Microbiol. Biotechnol. Lett. 47, 11-19. https://doi.org/10.4014/mbl.1801.01004
  5. Park, H., D. Hoh, D.-W. Shin, Z.-H. Kim, S.-J. Hong, S.-M. Lim, and C.-G. Lee. 2019. Isolation and characterization of five isolates of Tetraselmis sp. with rapid growth rates in low temperatures. J. Mar. Biosci. Biotechnol. 11, 23-28. https://doi.org/10.15433/KSMB.2019.11.1.023
  6. Baer, S., M. Heining, P. Schwerna, R. Buchholz, and H. Hubner. 2016. Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor. Algal Res. 14, 109-115. https://doi.org/10.1016/j.algal.2016.01.011
  7. Shin, D.-W., J.-H. Bae, Y. Cho, Y.-J. Ryu, Z.-H. Kim, S.-M. Lim, and C.-G. Lee. 2016. Isolation of new microalga, Tetraselmis sp. KCTC12236BP, and biodiesel production using its biomass. J. Mar. Biosci. Biotechnol. 8, 39-44. https://doi.org/10.15433/KSMB.2016.8.1.039
  8. Carvalho, A. P. and F. X. Malcata. 2000. Effect of culture media on production of polyunsaturated fatty acids by Pavlova lutheri. Cryptogram. Algol. 21, 59-71. https://doi.org/10.1016/S0181-1568(00)00101-X
  9. Harun, R., M. Singh, G. M. Forde, and M. K. Danquah. 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 14, 1037-1047. https://doi.org/10.1016/j.rser.2009.11.004
  10. Seo, Y.-B. and G.-D. Kim. 2017. Microbial production of carotenoids: biological functions and commercial applications. J. Life Sci. 27, 726-737. https://doi.org/10.5352/JLS.2017.27.6.726
  11. Van Vooren, G., F. L. Grand, J. Legrand, S. Cuine, G. Peltier, and J. Pruvost. 2012. Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application. Bioresour. Technol. 124, 421-432. https://doi.org/10.1016/j.biortech.2012.08.009
  12. Yaakob, M. A., R. M. S. R. Mohamed, A. Al-Gheethi, R. A. Gokare, and R. R. Ambati. 2021. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells, 10, 393. https://doi.org/10.3390/cells10020393
  13. Zhao, Y., Y. Hou, W. Chai, Z. Liu, X. Wang, C. He, Z. Hu, S. Chen, W. Wang, and F. Chen. 2020. Transcriptome analysis of Haematococcus pluvialis of multiple defensive systems against nitrogen starvation. Enzyme Microb. Technol. 134, 109487. https://doi.org/10.1016/j.enzmictec.2019.109487
  14. Satpati, G. G., P. C. Gorain, and R. Pal. 2016. Efficacy of EDTA and phosphorous on biomass yield and total lipid accumulation in two green microalgae with special emphasis on neutral lipid detection by flow cytometry. Adv. Behav. Biol. 2016.
  15. Yim, K.-J., H. Park, C.-S. Lee, B.-Y. Jo, S. W. Nam, C.-G. Lee, and Z.-H. Kim. 2019. Effects of nitrogen and phosphorus starvation on growth and fatty acid production in newly isolated two freshwater green microalgae fro m Nakdonggang River. J. Mar. Biosci. Biotechnol. 11, 81-88.
  16. Kim, Z.-H., H. Park, Y.-J. Ryu, D.-W. Shin, S.-J. Hong, H.-L. Tran, S.-M. Lim, and C.-G. Lee. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27, 1763-1773. https://doi.org/10.1007/s10811-015-0556-y
  17. Jang, H.-J., K.-J. Yim, B.-Y. Jo, S. W. Nam, Y.-H. Nam, B.-S. Hwang, C.-S. Lee, J.-Y. Jung, S.-H. Woo, S. Lee, E. Hong, and Z.-H. Kim. 2021. Antioxidant and anticancer activities of methanolic extracts from indigenous fresh water green microalgae. KSBB. J. 36, 154-164. https://doi.org/10.7841/ksbbj.2021.36.2.154
  18. Choi, G.-G., Kim, B.-H., Ahn, C.-Y., and Oh, H.-M. 2011. Effect of nitrogen limitation on oleic acid biosynthesis in Botryococus brauni. J. Apl. Phycol. 6. 1031-1037.
  19. Sahin, S., N. T. B. M. Nasir, I. Erken, Z. E. Cakmak, and T. Cakmak. 2019. Antioxidant composite films with chitosan and carotenoid extract from Chlorella vulgaris: optimization of ultrasonic-assisted extraction of carotenoids and surface characterization of chitosan films. Mater. Res. Express. 6, 095404. https://doi.org/10.1088/2053-1591/ab2def
  20. Park, H., K.-J. Yim, J.-H. Min, S.-M. Kang, C.-W. Han, C.-S. Lee, J.-Y. Jung, S.-J. Hong, C.-G. Lee, and Z.-H. Kim. 2020. Investigation on media composition for cultivation of a newly isolated freshwater microalga Parachlorella sp. to enhance fatty acid productivity. Microbiol. Biotechnol. Lett. 48. 328-336. https://doi.org/10.4014/mbl.1912.12020
  21. Redfield, A. C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46, 221-230.
  22. Kapdan, I. K., and S. Aslan. 2008. Application of the Stover-Kincannon kinetic model to nitrogen removal by Chlorella vulgaris in a continuously operated immobilized photobioreactor system. J. Chem. Technol. Biot. 83, 998-1005. https://doi.org/10.1002/jctb.1905