DOI QR코드

DOI QR Code

A Fluorescent Recombinase Aided Amplification Assay for Detection of Babesia microti

  • Lin, Hong (Jiangsu Province Blood Center) ;
  • Zhao, Song (Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases) ;
  • Ye, Yuying (Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases) ;
  • Shao, Lei (Jiangsu Province Blood Center) ;
  • Jiang, Nizhen (Jiangsu Province Blood Center) ;
  • Yang, Kun (Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases)
  • Received : 2022.03.17
  • Accepted : 2022.06.07
  • Published : 2022.06.30

Abstract

Babesia microti is one of the most common causative agents of babesiosis. A sensitive and rapid detection is necessary for screening potentially infected individuals. In this study, B. microti cytochrome c oxidase subunit I (cox1) was selected as the target gene, multiple primers were designed, and optimized by a recombinase-aided amplification (RAA) assay. The optimal primers and probe were labeled with fluorescein. The sensitivity of fluorescent RAA (fRAA) was evaluated using gradient diluents of the cox1 recombinant plasmid and genomic DNA extracted from whole blood of B. microti infected mice. The specificity of fRAA was assessed by other transfusion transmitted parasites. The analytical sensitivity of the fRAA assay was 10 copies of recombinant plasmid per reaction and 10 fg/µl B. microti genomic DNA. No cross-reaction with any other blood-transmitted parasites was observed. Our results demonstrated that the fRAA assay would be rapid, sensitive, and specific for the detection of B. microti.

Keywords

Acknowledgement

This work was supported by Social Development Project (BE2019755) and International Technology Corporation Project (BZ2020003) from the Department of Science and Technology of Jiangsu Province. Supplementary material associated with this article can be found in the online version.

References

  1. Madison-Antenucci S, Kramer LD, Gebhardt LL, Kauffman E. Emerging tick-borne diseases. Clin Microbiol Rev 2020; 33: e00083-18. https://doi.org/10.1128/CMR.00083-18
  2. Gumber S, Nascimento FS, Rogers KA, Bishop HS, Rivera HN, Xayavong MV, Devare SG, Schochetman G, Amancha PK, Qvarnstrom Y, Wilkins PP, Villinger F. Experimental transfusion-induced Babesia microti infection: dynamics of parasitemia and immune responses in a rhesus macaque model. Transfusion 2016; 56: 1508-1519. https://doi.org/10.1111/trf.13521
  3. Vannier E, Krause PJ. Human babesiosis. N Engl J Med 2012; 366: 2397-2407. https://doi.org/10.1056/NEJMra1202018
  4. Xu B, Liu XF, Cai YC, Huang JL, Zhang RX, Chen JH, Cheng XJ, Zhou X, Xu XN, Zhou Y, Zhang T, Chen SB, Li J, Wu QF, Sun CS, Fu YF, Chen JX, Zhou XN, Hu W. Screening for biomarkers reflecting the progression of Babesia microti infection. Parasit Vectors 2018; 11: 379. https://doi.org/10.1186/s13071-018-2951-0
  5. Krause PJ, Telford S, Spielman A, Ryan R, Magera J, Rajan TV, Christianson D, Alberghini TV, Bow L, Persing D. Comparison of PCR with blood smear and inoculation of small animals for diagnosis of Babesia microti parasitemia. J Clin Microbiol 1996; 34: 2791-2794. https://doi.org/10.1128/JCM.34.11.2791-2794.1996
  6. Levin AE, Williamson PC, Bloch EM, Clifford J, Cyrus S, Shaz BH, Kessler D, Gorlin J, Erwin JL, Krueger NX, Williams GV, Penezina O, Telford SR, Branda JA, Krause PJ, Wormser GP, Schotthoefer AM, Fritsche TR, Busch MP. Serologic screening of United States blood donors for Babesia microti using an investigational enzyme immunoassay. Transfusion 2016; 56: 1866-1874. https://doi.org/10.1111/trf.13618
  7. Teal AE, Habura A, Ennis J, Keithly JS, Madison-Antenucci S. A new real-time PCR assay for improved detection of the parasite Babesia microti. J Clin Microbiol 2012; 50: 903-908. https://doi.org/10.1128/JCM.05848-11
  8. Stanley J, Stramer SL, Erickson Y, Cruz J, Gorlin J, Janzen M, Rossmann SN, Straus T, Albrecht P, Pate LL, Galel SA. Detection of Babesia RNA and DNA in whole blood samples from US blood donations. Transfusion 2021; 6: 1317-1325. https://doi.org/10.1111/trf.16617
  9. Moritz ED, Winton CS, Tonnetti L, Townsend RL, Berardi VP, Hewins ME, Weeks KE, Dodd RY, Stramer SL. Screening for Babesia microti in the U.S. Blood Supply. N Engl J Med 2016; 375: 2236-2245. https://doi.org/10.1056/NEJMoa1600897
  10. Goodell AJ, Bloch EM, Krause PJ, Custer B. Costs, consequences, and cost-effectiveness of strategies for Babesia microti donor screening of the US blood supply. Transfusion 2014 7; 54: 2245-2257. https://doi.org/10.1111/trf.12805
  11. Wu F, Cai YC, Qin Z. Q AL, Lu Y, Chen SH, Wu XP, Chen J X. (2016) Development of loop-mediated isothermal amplification (LAMP) assay combined with FTA card for detecting Babesia microti. Chin J Zoonoses 2016; 32: 435-441 (in Chinese). https://doi.org/10.3969/j.issn.1002-2694.2016.05.004
  12. Nie Z, Zhao Y, Shu X, Li D, Ao Y, Li M, Wang S, Cui J, An X, Zhan X, He L, Liu Q, Zhao J. Recombinase polymerase amplification with lateral flow strip for detecting Babesia microti infections. Parasitol Int 2021; 83: 102351. http://doi.org/10.1016/j.parint.2021.102351
  13. Hikosaka K, Watanabe Y, Tsuji N, Kita K, Kishine H, Arisue N, Palacpac NM, Kawazu, S, Sawai H, Horii T, Igarashi I, Tanabe K. Divergence of the mitochondrial genome structure in the apicomplexan parasites, Babesia and Theileria. Mol Biol Evol 2010; 27: 1107-1116. http://doi.org/10.1093/molbev/msp320
  14. Hikosaka K, Tsuji N, Watanabe Y, Kishine H, Horii T, Igarashi I, Kita K, Tanabe K. Novel type of linear mitochondrial genomes with dual flip-flop inversion system in apicomplexan parasites, Babesia microti and Babesia rodhaini. BMC Genomics 2012; 13: 622. http://doi.org/10.1186/1471-2164-13-622
  15. Persing DH, Mathiesen D, Marshall WF, Telford SR, Spielman A, Thomford JW, Conrad PA, Detection of Babesia microti by polymerase chain reaction. J Clin Microbiol 1992; 30: 2097-2103. https://doi.org/10.1128/jcm.30.8.2097-2103.1992
  16. Kamau E, Tolbert LS, Kortepeter L, Pratt M, Nyakoe N, Muringo L, Ogutu B, Waitumbi JN, Ockenhouse CF. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of Plasmodium by amplifying RNA and DNA of the 18S rRNA genes. J Clin Microbiol 2011; 49: 2946-2953. https://doi.org/10.1128/JCM.00276-11
  17. Zhou X, Xia S, Huang JL, Tambo E, Zhuge HX, Zhou XN. Human babesiosis, an emerging tick-borne disease in the People's Republic of China. Parasit Vectors 2014; 7: 509. http://doi.org/10.1186/s13071-014-0509-3
  18. Lin H, Ji YH, Chen XL, Zhu SW, Sun J, Huang CY, Jiao YJ. Seroprevalence of Babesia infection among blood donors in Jiangsu province. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2019; 31: 516-518 (in Chinese). http://doi.org/10.16250/j.32.1374.2017209
  19. Chen Z, Li H, Gao X, Bian A, Yan H, Kong D, Liu X. Human babesiosis in China: a systematic review. Parasitol Res 2019; 118: 1103-1112. http://doi.org/10.1007/s00436-019-06250-9
  20. Gao ZH, Huang TH, Jiang BG, Jia N, Liu ZX, Shao ZT, Jiang RR, Liu HB, Wei R, Li YQ, Yao HW, von Fricken ME, Jiang JF, Du CH, Cao WC. Wide distribution and genetic diversity of Babesia microti in small mammals from Yunnan province, Southwestern China. PLoS Negl Trop Dis 2017; 11: e0005898. http://doi.org/10.1371/journal.pntd.0005898
  21. Wei CY, Wang XM, Wang ZS, Wang ZH, Guan ZZ, Zhang LH, Dou XF, Wang H. High prevalence of Babesia microti in small mammals in Beijing. Infect Dis Poverty 2020; 9: 155. http://doi.org/10.1186/s40249-020-00775-3
  22. Zhou X, Li SG, Wang JZ, Huang JL, Zhou HJ, Chen JH, Zhou XN, Emergence of human babesiosis along the border of China with Myanmar: detection by PCR and confirmation by sequencing. Emerg Microbes Infect 2014; 3: e55. http://doi.org/10.1038/emi.2014.55
  23. Chen Y, Yan D, Zhang YC. Transfusion-associated babesiosis in China: a case report. Transfus Apher Sci 2020; 59: 102902. http://doi.org/10.1016/j.transci.2020.102902
  24. Bloch EM, Yang Y, He M, Tonnetti L, Liu Y, Wang J, Guo Y, Li H, Leiby DA, Shan H. A pilot serosurvey of Babesia microti in Chinese blood donors. Vox Sang 2018; 113: 345-349. http://doi.org/10.1111/vox.12648