과제정보
본 논문은 환경부의 재원으로 국립환경과학원의 지원을 받아 수행하였습니다(NIER-2019-01-01-012).
참고문헌
- Ministry of Environment. Toxic Chemicals Control Act, Rep. Sejong: Ministry of Environment; 2012.
- Ministry of Environment. Act on Registration, Evaluation, ETC. of Chemicals. Sejong: Ministry of Environment; 2018.
- Pizzo F, Lombardo A, Manganaro A, Benfenati E. In silico models for predicting ready biodegradability under REACH: a comparative study. Sci Total Environ. 2013; 463-464: 161-168. https://doi.org/10.1016/j.scitotenv.2013.05.060
- Dearden J. Prediction of environmental toxicity and fate using quantitative structure-activity relationships (QSARs). J Braz Chem Soc. 2002; 13(6): 754-762. https://doi.org/10.1590/S0103-50532002000600005
- Ock HS. Developing trend of QSAR modeling and pesticides. Korean J Pestic Sci. 2011; 15(1): 68-85.
- Lozano S, Lescot E, Halm MP, Lepailleur A, Bureau R, Rault S. Prediction of acute toxicity in fish by using QSAR methods and chemical modes of action. J Enzyme Inhib Med Chem. 2010; 25(2): 195-203. https://doi.org/10.3109/14756360903169857
- Kim J, Seo J, Kim T, Kim HK, Park S, Kim PJ. Prediction of human health and ecotoxicity of chemical substances using the OECD QSAR application toolbox. J Environ Health Sci. 2013; 39(2): 130-137. https://doi.org/10.5668/JEHS.2013.39.2.130
- de Roode D, Hoekzema C, de Vries-Buitenweg S, van de Waart B, van der Hoeven J. QSARs in ecotoxicological risk assessment. Regul Toxicol Pharmacol. 2006; 45(1): 24-35. https://doi.org/10.1016/j.yrtph.2006.01.012
- Khan K, Khan PM, Lavado G, Valsecchi C, Pasqualini J, Baderna D, et al. QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors. Chemosphere. 2019; 229: 8-17. Erratum in: Chemosphere. 2019; 237: 124397. https://doi.org/10.1016/j.chemosphere.2019.04.204
- US EPA. Ecological Structure-Activity Relationships Program (ECOSAR) Methodology Document v2.0. Available: https://epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-program-ecosar-methodology-document [accessed 8 April 2019].
- Melnikov F, Kostal J, Voutchkova-Kostal A, Zimmerman JB, Anastas PT. Assessment of predictive models for estimating the acute aquatic toxicity of organic chemicals. Green Chem. 2016; 18: 4432-4445. https://doi.org/10.1039/c6gc00720a
- Golbamaki A, Cassano A, Lombardo A, Moggio Y, Colafranceschi M, Benfenati E. Comparison of in silico models for prediction of Daphnia magna acute toxicity. SAR QSAR Environ Res. 2014; 25(8): 673-694. https://doi.org/10.1080/1062936x.2014.923041
- Kim HK, Kim JY, Park MY, Sung CH, Doo YK, Ki PJ. A Study on Structural Alerts and Application of (Q)SARs for Mutagenicity Screening. Incheon: National Institute of Environmental Research; 2011.
- Lee JW, Park S, Jang SW, Lee S, Moon S, Kim H, et al. Toxicity prediction using three quantitative structure-activity relationship(QSAR) programs (TOPKAT®, Derek®, OECD toolbox). J Environ Health Sci. 2019; 45(5): 457-464. https://doi.org/10.5668/JEHS.2019.45.5.457
- BIOVIA. Predictive Toxicology in Discovery Studio, Accelrys. Available: http://www.accelrys.com [accessed 12 April 2019].
- Netzeva T, Worth A. Classification of Phthalates According to Their (Q)SAR Predicted Acute Toxicity to Fish: A Case Study. Ispra: European Commission Directorate General Joint Research Centre; 2007.
- Rorije E, Loonen H, Muller M, Klopman G, Peijnenburg WJ. Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test. Chemosphere. 1999; 38(6): 1409-1417. https://doi.org/10.1016/S0045-6535(98)00543-8
- Sung CH, Park SY, Choi YS, Kim HK, Sung MH, Moon SA, et al. Study on the Improvement of Genotoxicity Prediction Using QSARs Models. Incheon: National Institute of Environmental Research; 2017.
- Tunkel J, Mayo K, Austin C, Hickerson A, Howard P. Practical considerations on the use of predictive models for regulatory purposes. Environ Sci Technol. 2005; 39(7): 2188-2199. https://doi.org/10.1021/es049220t
- US EPA. User's Guide for T.E.S.T. 2016, Ver.4.2. Available: https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test [accessed 8 April 2019].
- Moore DR, Breton RL, MacDonald DB. A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish. Environ Toxicol Chem. 2003; 22(8): 1799-1809. https://doi.org/10.1897/00-361
- Cappelli CI, Cassano A, Golbamaki A, Moggio Y, Lombardo A, Colafranceschi M, et al. Assessment of in silico models for acute aquatic toxicity towards fish under REACH regulation. SAR QSAR Environ Res. 2015; 26(12): 977-999. https://doi.org/10.1080/1062936X.2015.1104519
- Burden N, Maynard SK, Weltje L, Wheeler JR. The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: a retrospective validation approach. Regul Toxicol Pharmacol. 2016; 80: 241-246. https://doi.org/10.1016/j.yrtph.2016.05.032
- Talapatra SN, Konar S. Predictive acute toxicity comparison in Daphnia magna for common organic chemicals present in cosmetics by using two QSAR modeling softwares. World Sci News. 2016; 42: 101-118.
- Schuurmann G, Ebert RU, Kuhne R. Quantitative read-across for predicting the acute fish toxicity of organic compounds. Environ Sci Technol. 2011; 45(10): 4616-4622. https://doi.org/10.1021/es200361r
- Sheffield TY, Judson RS. Ensemble QSAR modeling to predict multispecies fish toxicity lethal concentrations and points of departure. Environ Sci Technol. 2019; 53(21): 12793-12802. https://doi.org/10.1021/acs.est.9b03957
- Ferrari T, Lombardo A, Benfenati E. QSARpy: a new flexible algorithm to generate QSAR models based on dissimilarities. The log Kow case study. Sci Total Environ. 2018; 637-638: 1158-1165. https://doi.org/10.1016/j.scitotenv.2018.05.072
- Zuriaga E, Giner B, Valero MS, Gomez M, Garcia CB, Lomba L. QSAR modelling for predicting the toxic effects of traditional and derived biomass solvents on a Danio rerio biomodel. Chemosphere. 2019; 227: 480-488. https://doi.org/10.1016/j.chemosphere.2019.04.054
- Di Marzio W, Saenz ME. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish. Ecotoxicol Environ Saf. 2004; 59(2): 256-262. https://doi.org/10.1016/j.ecoenv.2003.11.006
- Schultz TW. Relative toxicity of para-substituted phenols: log KOW and pKa-dependent structure-activity relationships. Bull Environ Contam Toxicol. 1987; 38(6): 994-999. https://doi.org/10.1007/BF01609086
- Reuschenbach P, Silvani M, Dammann M, Warnecke D, Knacker T. ECOSAR model performance with a large test set of industrial chemicals. Chemosphere. 2008; 71(10): 1986-1995. https://doi.org/10.1016/j.chemosphere.2007.12.006
- Hrovat M, Segner H, Jeram S. Variability of in vivo fish acute toxicity data. Regul Toxicol Pharmacol. 2009; 54(3): 294-300. https://doi.org/10.1016/j.yrtph.2009.05.013
- Devillers J, Mombelli E, Samsera R. Structural alerts for estimating the carcinogenicity of pesticides and biocides. SAR QSAR Environ Res. 2011; 22(1-2): 89-106. https://doi.org/10.1080/1062936X.2010.548349
- Cronin MT. (Q)SARs to predict environmental toxicities: current status and future needs. Environ Sci Process Impacts. 2017; 19(3): 213-220. https://doi.org/10.1039/C6EM00687F
- Pradeep P, Povinelli RJ, White S, Merrill SJ. An ensemble model of QSAR tools for regulatory risk assessment. J Cheminform. 2016; 8: 48. https://doi.org/10.1186/s13321-016-0164-0
- Kim KY, Shin SE, No KT. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation. Environ Health Toxicol. 2015; 30 Suppl: s2015007.
- Kim HK, Kim JY, Cha HK, Park MY, Sung CH, Kim PJ. Study on the Best Application of (Q)SARs to Predict Aquatic Toxicity of Organic Chemicals. Incheon: National Institute of Environmental Research; 2010.
- Sung CH, Park SY, Kim KT, Kim KH, Sung MH, Moon SA, et al. Study on the Improvement of Mutagenicity Prediction Using QSAR Models. Incheon: National Institute of Environmental Research; 2016.
- Sung CH, Park SY, Lee JW, Kim PJ, Yu SD, Sung MH, et al. A Study for the Improvement of a Prediction Using QSAR Models to Find Out Hazardous Substances(I). Incheon: National Institute of Environmental Research; 2018.
- Kim J, Choi K, Kim K, Kim D. QSAR approach for toxicity prediction of chemicals used in electronics industries. J Environ Health Sci. 2014; 40(2): 105-113. https://doi.org/10.5668/JEHS.2014.40.2.105