DOI QR코드

DOI QR Code

Compliance Validation Method of UAM Composite Part Manufacturing System based on Composite Material Qualification System

복합재료인증체계를 통한 UAM 용 복합재료 부분품 인증 적합성 확인 방안

  • Received : 2022.02.11
  • Accepted : 2022.05.23
  • Published : 2022.06.30

Abstract

UAM (Urban Air Mobility) is a new safe, secure, and more sustainable air transportation system for passengers and cargo in urban environments. Commercial operations of UAM are expected to start in 2025. Since production rates of UAM are expected to be closer to cars than conventional aircraft, the airworthiness methodology for UAM must be prepared for mass production. Composite materials are expected to be mainly used for UAM structures to reduce weight. In this paper, the composite material qualification method was derived and the materials were applied for small aircraft application. It is expected to reduce the airworthiness certification time by applying composite material qualification system and its database.

UAM(Urban Air Mobility) 은 승객과 화물을 운반할 수 있는 새로운 형태의 안전하고 적합한 운송수단으로써 각광받고 있다. UAM 의 상업적인 사용은 2025년부터 시작될 것으로 예측되고 있다. UAM의 생산률은 기존 항공기 생산률보다 자동차 생산률에 더 가까울 것으로 예측되므로, 대량 생산 항공기에 대비한 새로운 인증 방안을 구축할 필요가 있다. 이러한 UAM은 구조물의 중량을 줄이기 위해 복합재료가 주 재료로써 사용될 것으로 예상되고 있다. 따라서 본 연구에서는 항공기용 복합재료 시범인증을 수행함으로써 국내 복합재료 인증 방안을 제시하고 인증소재를 소형 항공기용 부품에 적용하기 위한 연구를 수행하였다. 본 연구를 통해 대량생산이 필요한 UAM 항공기의 인증 시간을 절감할 수 있을 것으로 예상한다.

Keywords

Acknowledgement

이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임 ('20011022').

References

  1. EASA, "Study on the Societal Acceptance of Urban Air Mobility in Europe," 2021.
  2. P. Kopardekar, "Supply Chain Ecosystem for Urban Air Mobility," Aviation Week Urban Air Mobility Conference, 2019.
  3. W. Seneviratne and J. Tomblin, Dynamic Response of Composite Structures Subjected to Blast Loading, Joint Advanced Materials & Structures Center of Excellence, 2010.
  4. Y. M. Yang, J. S. Kwon, J. S Kim, S. Y. Lee, "A Study on Manufacturing Methods of Cocuring Composite Wings of Solar-Powered UAV", Journal of The Society for Aerospace System Engineering, Vol.10, No.1, pp.43-50, 2016. https://doi.org/10.20910/JASE.2016.10.1.43
  5. "Certification, Type Design, Material and Process Qualification for Composite Light Aircraft", CM-S-006 Issue 01, 2015.
  6. J. S. Tomblin, J. D. Tauriello and S. P. Doyle A Composite Material Qualification Method that Results in Cost, Time and Risk Reduction, Journal of Advanced Materials, 2002
  7. I. Kim, A Study on the Certification System and Development Plan of Domestic Composite Material for Aircraft Use, Journal of Aerospace System Engineering, 2015
  8. SI. Cho et al. Development of Composite Material Qualification System for Aerospace Application, SASE 2019 Fall Conference, 2019.
  9. G. Bogucki, W. McCarvill, S. Ward, and J. Tomblin, "Guidelines for the Development of Process Specifications, Instructions, and Controls for the Fabrication of Fiber-Reinforced Polymer Composites," FAA report DOT/FAA/AR-02/110, 2003.
  10. Composite Materials Handbook, CMH-17-1G, Volume 1 of 6, 2012.