DOI QR코드

DOI QR Code

Novel non-invasive molecular identification method for two tree frogs, Dryophytes suweonensis and Dryophytes japonicus, based on high resolution melting(HRM) analysis

  • Nakyung Yoo (Research Center for Endangered Species, National Institute of Ecology) ;
  • Keun-Yong Kim (AquaGenTech Co., Ltd) ;
  • Jung Soo Heo (AquaGenTech Co., Ltd) ;
  • Ju-Duk Yoon (Research Center for Endangered Species, National Institute of Ecology) ;
  • Keun-Sik Kim (Research Center for Endangered Species, National Institute of Ecology)
  • Received : 2022.05.03
  • Accepted : 2022.06.17
  • Published : 2022.06.30

Abstract

Two tree frogs, Dryophytes suweonensis and Dryophytes japonicus, inhabiting Korea, are morphologically similar and share the same habitats. Therefore, they are identified mainly through their calls, especially for males. Dryophytes suweonensis is registered as an endangered (IUCN: EN grade) and protected species in South Korea. Thus, it is necessary to develop a method to rapidly identify and discriminate the two species and establish efficient protection and restoration plans. We identified significant genetic variation between them by sequencing a maternally-inherited mitochondrial 12S ribosomal DNA region. Based on the sequence data, we designed a pair of primers containing 7bp differences for high resolution melting(HRM) analysis to rapidly and accurately characterize their genotypes. The HRM analysis using genomic DNA showed that the melting peak for D. suweonensis was 76.4±0.06℃, whereas that of D. japonicus was 75.0±0.05℃. The differential melt curve plot further showed a distinct difference between them. We also carried out a pilot test for the application of HRM analysis based on immersing D. suweonensis in distilled water for 30 min to generate artificial environmental DNA(eDNA). The results showed 1.10-1.31℃ differences in the melting peaks between the two tree frog samples. Therefore, this HRM analysis is rapid and accurate in identifying two tree frogs not only using their genomic DNA but also using highly non-invasive eDNA.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Ecology (NIE), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIE-B-2022-45). We thank J.W. Yoo for support on the sample collection.

References

  1. Arif IA and HA Khan. 2009. Molecular markers for biodiversity analysis of wildlife animals: a brief review. Anim. Biodivers. Conserv. 32:9-17. https://doi.org/10.32800/abc.2009.32.0009
  2. Bataille M, K Crainic, M Leterreux, M Durigon and P Mazancourt. 1999. Multiplex amplification of mitochondrial DNA for human and species identification in forensic evaluation. Forensic Sci. Int. 99:165-170. https://doi.org/10.1016/S0379-0738(98)00185-6
  3. Bedwell ME, KV Hopkins, C Dillingham and CS Goldberg. 2021. Evaluating Sierra Nevada yellow-legged frog distribution using environmental DNA. J. Wildl. Manage. 85:945-952. https://doi.org/10.1002/jwmg.22053
  4. Bellis C, KJ Ashton, L Freney, B Blair and LR Griffiths. 2003. A molecular genetic approach for forensic animal species identification. Forensic Sci. Int. 134:99-108. https://doi.org/10.1016/S0379-0738(03)00128-2
  5. Berry O and SD Sarre. 2007. Gel-free species identification using melt-curve analysis. Mol. Ecol. Notes 7:1-4. https://doi.org/10.1111/j.1471-8286.2006.01541.x
  6. Bertolini F, MC Ghionda, E D'Alessandro, C Geraci, V Chiofalo and LA Fontanesi. 2015. Next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures. PLoS One 10:e0121701.
  7. Borzee A, C Didinger and Y Jang. 2017. Complete mitochondrial genome of Dryophytes suweonensis (Anura Hylidae). Mitochondrial DNA B-Resour. 2:5-6. https://doi.org/10.1080/23802359.2016.1275833
  8. Borzee A, S Park, A Kim, HT Kim and Y Jang. 2013. Morphometrics of two sympatric species of tree frogs in Korea: a morphological key for the critically endangered Hyla suweonensis in relation to H. japonica. Anim. Cells Syst. 17:348-356. https://doi.org/10.1080/19768354.2013.842931
  9. Broquet T, L Berset-Braendli, G Emaresi and L Fumagalli. 2007. Buccal swabs allow efficient and reliable microsatellite genotyping in amphibians. Conserv. Genet. 8:509-511. https://doi.org/10.1007/s10592-006-9180-3
  10. Cardas JB, D Deconinck, I Marquez, PP Torre, E Garcia-Vazquez and G Machado-Schiaffino. 2020. New eDNA based tool applied to the specific detection and monitoring of the endangered European eel. Biol. Conserv. 250:108750.
  11. Clarke BT. 1997. The natural history of amphibian skin secretions, their normal functioning and potential medial applications. Biol. Rev. 72:365-379. https://doi.org/10.1017/S0006323197005045
  12. Do MS, JW Lee, HJ Jang, DI Kim, J Park and JC Yoo. 2017. Spatial distribution patterns and prediction of hotspot area for endangered herpetofauna species in Korea. J. Environ. Ecol. 31:381-396.
  13. Eggert LS, JA Eggert and DS Woodruff. 2001. Estimating population size for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol. Ecol. 12:1389-1402.
  14. Erali M, KV Voelkerding and CT Wittwer. 2008. High resolution melting applications for clinical laboratory medicine. Exp. Mol. Pathol. Suppl. 85:50-58. https://doi.org/10.1016/j.yexmp.2008.03.012
  15. Fitzcharles EM. 2012. Rapid discrimination between four Antarctic fish species, genus Macrourus, using HRM analysis. Fish. Res. 127-128:166-170. https://doi.org/10.1016/j.fishres.2012.02.002
  16. Garritano S, F Gemignani, C Voegele, T Nguyen-Dumont, FL Calvez-Kelm, DD Silva, F Lesueur, S Landi and SV Tavtigian. 2009. Determining the effectiveness of high resolution melting analysis for SNP genotyping and mutation scanning at the TP53 locus. BMC Genetics 10:1-12.
  17. Girish PS, ASR Anjaneyulu, KN Vishwas, BM Shivakumar, M Anand, M Patel and B Sharma. 2005. Meat species identification by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of mitochondrial 12S rRNA gene. Meat Sci. 70:107-112. https://doi.org/10.1016/j.meatsci.2004.12.004
  18. Goldberg CS, KM Strickler and DS Pilliod. 2015. Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms. Biol. Conserv. 183:1-3. https://doi.org/10.1016/j.biocon.2014.11.040
  19. Goldberg CS, ME Kaplan and CR Schwalbe. 2003. From the frog's mouth: buccal swabs for collection of DNA from amphibians. Herpetol. Rev. 34:220.
  20. Hall TA. 1999. January. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  21. Imaizumi K, T Akutsu, S Miyasaka and M Yoshino. 2007. Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. Int. J. Legal Med. 121:184-191.
  22. IUCN SSC Amphibian Specialist Group. 2017. Dryophytes suweonensis (amended version of 2014 assessment). The IUCN Red List of Threatened Species 2017: e.T55670A 112715252. https://doi.org/10.2305/IUCN.UK.2017-.RLTS.T55670A112715252.en. accessed on 13 June 2022.
  23. Jerde CL, AR Mahon, WL Chadderton and DM Lodge. 2011. "Sight-unseen" detection of rare aquatic species using environmental DNA. Conserv. Lett. 4:150-157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
  24. Kanthaswamy S. 2015. Review: domestic animal forensic genetics-biological evidence, genetic markers, analytical approaches and challenges. Anim. Genet. 46:473-484. https://doi.org/10.1111/age.12335
  25. Kocher TD, WK Thomas, A Meyer, SV Edwards, S Paabo, FX Villablanca and AC Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86:6196-6200. https://doi.org/10.1073/pnas.86.16.6196
  26. Kuramoto M. 1980. Mating calls of treefrogs (genus Hyla) in the Far East, with description of a new species from Korea. Copeia 1:100-108. https://doi.org/10.2307/1444138
  27. Lee HY and CS Park. 1992. Genetic studies on Korean anurans: length and restriction site variation in the mitochondrial DNA of tree frogs, Hyla japonica and H. suweonensis. Korean J. Zool. 35:219-225.
  28. Lee JE, DE Yang, YR Kim, H Lee, HI Lee, SY Yang and HY Lee. 1999. Genetic relationships of Korean treefrogs (Amphibia; Hylidae) based on mitochondrial cytochrome b and 12S rRNA genes. Korean J. Biol. Sci. 3:295-301. https://doi.org/10.1080/12265071.1999.9647499
  29. Lee MY, HS Jeon, MS Min and J An. 2017. Sequencing and analysis of the complete mitochondrial genome of Hyla suweonensis(Anura: Hylidae). Mitochondrial DNA B-Resour. 2:126-127. https://doi.org/10.1080/23802359.2017.1292475
  30. Martinou A, T Mancuso and AM Rossi. 2010. Application of high-resolution melting to large-scale, high-throughput SNP genotyping: A comparison with the TaqMan® method. J. Biomol. Screen. 15:623-629. https://doi.org/10.1177/1087057110365900
  31. Mills JW and BE Prum. 1984. Morphology of the exocrine glands of the frog skin. Am. J. Anat. 171:91-106. https://doi.org/10.1002/aja.1001710108
  32. Palomares F, JA Godoy, A Piriz and WE Johnson. 2002. Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol. Ecol. 11:2171-2182. https://doi.org/10.1046/j.1365-294X.2002.01608.x
  33. Pidancier N, C Miquel and C Miaud. 2003. Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. Herpetol. J. 13:175-178.
  34. Pilliod DS, CS Goldberg, RS Arkle and LP Waits. 2013. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70:1123-1130. https://doi.org/10.1139/cjfas-2013-0047
  35. Reed GH, JO Kent and CT Wittwer. 2007. High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597-608. https://doi.org/10.2217/14622416.8.6.597
  36. Rees HC, K Bishop, DJ Middleditch, JRM Patmore, BC Maddison and KC Gough. 2014. The application of eDNA for monitoring of the great crested newt in the UK. Ecol. Evol. 4:4023-4032. https://doi.org/10.1002/ece3.1272
  37. Robertson T, S Bibby, D O'Rourke, T Belfiore, H Lambie and AH Noormohammadi. 2009. Characterization of Chlamydiaceae species using PCR and high resolution melt curve analysis of the 16S rRNA gene. J. Appl. Microbiol. 107:2017-2028. https://doi.org/10.1111/j.1365-2672.2009.04388.x
  38. Roh G, A Borzee and Y Jang. 2014. Spatiotemporal distributions and habitat characteristics of the endangered treefrog, Hyla suweonensis, in relation to sympatric H. japonica. Ecol. Inform. 24:78-84. https://doi.org/10.1016/j.ecoinf.2014.07.009
  39. Sigsgaard EE, H Carl, PR Moller and PF Thomsen. 2015. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol. Conserv. 183:46-52. https://doi.org/10.1016/j.biocon.2014.11.023
  40. Thomsen PF, J Kielgast, LL Iversen, C Wiuf, M Rasmussen, MTP Gilbert, L Orlando and E Willerslev. 2012. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol. 21:2565-2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x
  41. Thomsen PF and E Willerslev. 2015. Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183:4-18. https://doi.org/10.1016/j.biocon.2014.11.019
  42. Tobe SS and A Linacre. 2008. A multiplex assay to identify 18 European mammal species from mixtures using mitochondrial cytochrome b gene. Electrophoresis 29:340-347. https://doi.org/10.1002/elps.200700706
  43. Toledo RC and C Jared. 1995. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 111:1-29. https://doi.org/10.1016/0300-9629(95)98515-I